Dr. rer. nat. Volker Kempf
Profil
Funktion | Wissenschaftliche(r) Mitarbeiter(in) |
IMCS Zugehörigkeit | 2018 - 2022 |
Abschluss | Dr. rer. nat. |
Dissertation | Pressure-robust discretizations for incompressible flow problems on anisotropic meshes |
Aktueller Link (ohne Gewähr) | Dr. rer. nat. Volker Kempf |
Research Interests
- Numerical Analysis of PDEs
- Finite Element Methods
- Pressure-robust Discretizations for (Navier-)Stokes equations
- Anisotropic Finite Elements
Publications
Articles in Peer-Reviewed International Journals
- Kempf, V.: Brezzi--Douglas--Marini interpolation on anisotropic simplices and prisms, Comptes Rendus Mathematiques, accepted, arXiv
- Apel, T.; Kempf, V.: Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading, Calcolo, 58(2):15, DOI: 10.1007/s10092-021-00402-zarXiv
- Apel, T.; Kempf, V.; Linke, A.; Merdon, C.: A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes, IMA Journal of Numerical Analysis, 42(1):392-416, DOI: 10.1093/imanum/draa097 arXiv
- Apel, T.; Kempf, V.: Brezzi--Douglas--Marini interpolation of any order on anisotropic triangles and tetrahedra, SIAM Journal on Numerical Analysis, 58(3):1696-1718, DOI: 10.1137/19M1302910 arXiv
- Kempf, V.: Approximated analytical approach for temperature calculation in pulsed arc welding, International Journal on Interactive Design and Manufacturing, 14(2):675-681, DOI: 10.1007/s12008-019-00638-8
Conference Proceedings
- Kempf, V.: Pressure-robust and conforming discretization of the Stokes equations on anisotropic meshes, Proceedings in Applied Mathematics and Mechanics, accepted, arXiv
- Kempf, V.: Pressure-robustness for the Stokes equations on anisotropic meshes, Proceedings in Applied Mathematics and Mechanics, 21(1):e202100112, DOI: 10.1002/pamm.202100112
- Apel, T.; Eckardt, L.; Haubner, C.; Kempf, V.: The maximal angle condition on finite elements: useful or not?, Proceedings in Applied Mathematics and Mechanics, 20(1):e202000116, DOI: 10.1002/pamm.202000116
Doktorarbeit
- Kempf, V.: Pressure-robust discretizations for incompressible flow problems on anisotropic meshes, Universität der Bundeswehr München (2022), https://athene-forschung.unibw.de/142816
International Conference Contributions
- Kempf, V.: Anisotropic and pressure-robust discretizations for the Stokes equations, 35th Chemnitz Finite Element Symposium, Herrsching, Germany, September 15-17, 2022
- Kempf, V.: Anisotropic and pressure-robust discretizations for the Stokes equations, CMAM 2022, Vienna, Austria, August 29 - September 2, 2022
- Kempf, V.: Pressure-robust and conforming discretization of the Stokes equations on anisotropic meshes, 92nd GAMM Annual Meeting, Aachen, Germany, August 15-18, 2022
- Kempf, V.: Anisotropic Brezzi--Douglas--Marini interpolation with applications to incompressible flows, NUM CFD Workshop, WIAS, Berlin, Germany, July 5-8, 2022
- Kempf, V.: Pressure-robust discretization for the Stokes equations on domains with re-entrant edges, DMV-ÖMG Annual Meeting, Passau/Online, Germany, September 27 - October 01, 2021
- Kempf, V.: Pressure-robust, non-conforming discretization of the Stokes equations on domains with re-entrant edges, 91st GAMM Annual Meeting, Kassel/Online, Germany, March 15-19, 2021
- Kempf, V.: Pressure-robust discretization of the Stokes equations on domains with edges, 33th Chemnitz Finite Element Symposium, Chemnitz/Online, Germany, September 14-17, 2020
- Kempf, V.: Anisotropic pressure-robust discretizations of the Stokes equations, ALGORITMY 2020, Podbanske/Online, Slovakia, September 10-15, 2020
- Kempf, V.: A non-conforming pressure-robust finite element method for the Stokes equations on anisotropic meshes, International Congress on Industrial and Applied Mathematics (ICIAM2019), Valencia, Spain, July 15-19, 2019
Teaching
Courses & Exercises
- Übung Mathematik I, II, III (HT2018, WT2019, HT2019, WT2020, HT2020, WT2021, HT2021, WT2022)
- Übung Partielle Differentialgleichungen (WT2021)
- Übung Numerische Mathematik (HT2022)
Supervised Student Projects / Theses
- Implementing the finite element method for quantum graphs, Henrik Bartsch, Bachelor's Thesis (2021)
- Finite-Elemente-Netze ohne Maximalwinkelbedingung in dreidimensionalen Gebieten, Wilhelm Böhme, Master's Thesis (2020)
- Implementierung eines a-posteriori Fehlerschätzers für die Stokes Gleichungen, Wilhelm Böhme, Student Project (2019)
- Finite-Elemente-Lösung einer Randwertaufgabe mit nichtglatter Randbedingung, Wilhelm Böhme, Bachelor's Thesis (2019)