Thomas Apel: Anisotropic finite elements: Local estimates and applications. Series "Advances in Numerical Mathematics", Teubner, Stuttgart, 1999. ISBN 3-519-02744-5. Vergriffen! (Habilitationsschrift. Preprint SFB393/99-03, TU Chemnitz, 1999.) [ full text: ps.gzpdf ]
Thomas Apel: Finite-Elemente-Methoden über lokal verfeinerten Netzen für elliptische Probleme in Gebieten mit Kanten. PhD thesis, TU Chemnitz, 1991
Thomas Apel, Ulrich Langer, Arnd Meyer, Olaf Steinbach (eds.): Advanced Finite Element Methods with Applications - Selected Papers from the 30th Chemnitz Finite Element Symposium 2017.Lecture Notes in Computational Science and Engineering 128. Springer, Berlin, 2019.
Thomas Apel, Albrecht Böttcher, Gundolf Haase, Bernd Heinrich, Michael Jung, Ulrich Langer, Arnd Meyer, Arnd Rösch, Olaf Steinbach (eds.): Selected papers from the 20th Chemnitz Finite Element Symposium.ETNA32(2008), pp. 1-209
Thomas Apel, Arnd Meyer (eds.): Selected papers from the 16th Chemnitz Finite Element Symposium 2003. Appl. Numer. Math. 54(2005)3-4, pp. 311-579
Invited contributions
Thomas Apel, Markus Melenk: Interpolation and quasi-interpolation in h- and hp-version finite element spaces. In E. Stein, R. de Borst and T. J. R. Hughes (eds.): Encyclopedia of Computational Mechanics, Second Edition. Wiley, Chichester, 2016.
Thomas Apel, Johannes Pfefferer, and Arnd Rösch: Locally refined meshes in optimal control for elliptic partial differential equations - an overview. In: G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher, and S. Ulbrich (eds.): Trends in PDE Constrained Optimization. International Series of Numerical Mathematics 165. Birkhäuser, Basel, 2014, pp. 285-302.
Thomas Apel, Dieter Sirch: A priori mesh grading for distributed optimal control problems. In: G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich (eds.): Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics 160. Springer, Basel, 2012, pp. 377-389.
Thomas Apel: Interpolation in h-version finite element spaces. In E. Stein, R. de Borst and T. J. R. Hughes (eds.): Encyclopedia of Computational Mechanics. Wiley, Chichester, 2004, pp. 55-72.
Journal papers
Thomas Apel, Philipp Zilk: Isogeometric analysis of the Laplace eigenvalue problem on circular sectors: Regularity properties, and graded meshes. Computers & Mathematics with Applications 175(2024), 236-254. [ Preprint | Paper ]
Thomas Apel, Mariano Mateos, Arnd Rösch: Non-coercive Neumann boundary control problems. Results Math 79(2024), 227. [ Preprint | Paper ]
Thomas Apel, Volker Kempf: Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading. Calcolo 58(2021) 15. [ Preprint | Paper ]
Thomas Apel, Volker Kempf, Alexander Linke, Christian Merdon: A non-conforming pressure-robust finite element method for the Stokes equations on anisotropic meshes. IMA J. Numer. Anal. 42(2022)1, 392–416 [ Preprint | Paper ]
Thomas Apel, Serge Nicaise: Regularity of the solution of the scalar Signorini problem in polygonal domains. Results in Mathematics (RIMA) 75(2020). [ Preprint | Paper ]
Thomas Apel, Volker Kempf: Brezzi-Douglas-Marini interpolation of any order on anisotropic triangles and tetrahedra. SIAM J. Numer. Anal. (SINUM) 58(2020), 1696–1718. [Preprint | Paper]
Thomas Apel, Johannes Pfefferer, Sergejs Rogovs, Max Winkler: L∞-error estimates for Neumann boundary value problems on graded meshes. IMA J. Numer. Anal. 40(2018), 474–497. [Preprint | Paper]
Thomas Apel, Mariano Mateos, Johannes Pfefferer, Arnd Rösch: Error estimates for Dirichlet control problems in polygonal domains. Math. Control Relat. Fields 8(2018), 217–245. [ Preprint | paper ]
Thomas Apel, Johannes Pfefferer, Max Winkler: Error estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains. Accepted by IMA J. Numer. Anal. 2017 [ Preprint | Paper ]
Thomas Apel, Serge Nicaise, Johannes Pfefferer: Adapted numerical methods for the numerical solution of the Poisson equation with L2 boundary data in non-convex domains. SIAM J. Numer. Anal. 55(2017), 1937-1957 [Preprint | Paper]
Thomas Apel, Olaf Steinbach, Max Winkler: Error estimates for Neumann boundary control problems with energy regularization. J. Numer. Math. 24(2016), 207-233. [ preprint | paper ]
Thomas Apel, Serge Nicaise, Johannes Pfefferer: Discretization of the Poisson equation with non-smooth boundary data and emphasis on non-convex domains. Numer. Methods PDE, 32(2016), 1433–1454. [ Preprint | Paper ]
Thomas Apel, Mariano Mateos, Johannes Pfefferer, Arnd Rösch: On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains. SIAM J. Control Optim. 53(2015), 3620–3641. [ Preprint | Paper]
Thomas Apel, Johannes Pfefferer, Max Winkler: Local mesh refinement for the discretisation of Neumann boundary control problems on polyhedra. Math. Meth. Appl. Sci. 39(2016), 1206–1232 [ Preprint | Paper ]
Thomas Apel, Ariel Lombardi, and Max Winkler: Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Omega). M2AN 48(2014), 1117-1145. [ Preprint | paper ]
Thomas Apel, Johannes Pfefferer, and Arnd Rösch: Finite element error estimates on the boundary with application to optimal control. Math. Comp. 84(2015), 33-70. [ Preprint | paper ]
Thomas Apel, Thomas Flaig ,and Serge Nicaise: A priori error estimates for finite element methods for H(2,1)-elliptic equations. Numer. Funct. Anal. Optimization 35(2014)2, 153-176 [Paper | Preprint]
Thomas Apel, Thomas Flaig: Crank-Nicolson schemes for optimal control problems with evolution equations. SIAM J. Numer. Anal. 50(2012), 1484-1512 [ Paper | Preprint]
Thomas Apel, Johannes Pfefferer, and Arnd Rösch: Finite element error estimates for Neumann boundary control problems on graded meshes. Comput. Optim. Appl. 52(2012), 3-28 [ Paper | Preprint ]
Thomas Apel, Olaf Benedix, Dieter Sirch, and Boris Vexler: A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49(2011), 992-1005 [ Paper | Preprint ]
Thomas Apel, Dieter Sirch: L2-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes. Appl. Math. 56(2011)2, 177–206. [ paper | Preprint ]
Gabriel Acosta, Thomas Apel, Ricardo G. Durán and Ariel L. Lombardi: Error estimates for Raviart-Thomas interpolation of any order over anisotropic tetrahedra. Math. Comp. 80(2011), 141-163. [paper | Preprint]
Thomas Apel, Serge Nicaise, Dieter Sirch: A posteriori error estimation of residual type for anisotropic diffusion-convection-reaction problems. J. Comp. Appl. Math. 235(2011)8, 2805-2820. [paper]
Thomas Apel, Arnd Rösch and Dieter Sirch: L∞-error estimates on graded meshes with application to optimal control. SIAM J. Control Optim. 48(2009), 1771-1796. [paper | Preprint]
Thomas Apel, Gunter Winkler: Optimal control under reduced regularity Appl. Numer. Math., 59(2009), 2050--2064. [paper | Preprint]
Thomas Apel, Dominique Leguillon, Cornelia Pester, Zohar Yosibash: Edge singularities and structure of the 3-D Williams expansion. Comptes Rendus M\'ecanique, 336(2008), 629-635. [pdf-file]
Gabriel Acosta, Thomas Apel, Ricardo G. Durán, Ariel L. Lombardi: Anisotropic error estimates for an interpolant defined via moments. Computing 82(2008), 1-9. [paper | preprint]
Thomas Apel, Gunar Matthies: Non-conforming, anisotropic, rectangular finite elements of arbitrary order for the Stokes problem. SIAM J. Numer. Anal. 46(2008), 1867-1891. [paper | Preprint]
Thomas Apel, Tobias Knopp, Gert Lube: Stabilized finite element methods with anisotropic mesh refinement for the Oseen problem. Appl. Numer. Math. 58(2008), 1830-1843. [preprint | paper]
Thomas Apel, Serge Nicaise: A posteriori error estimations of a SUPG method for anisotropic diffusion-convection-reaction problems. C. R. Acad. Sci. Paris, Ser. I, vol. 345, pp. 657-662, 2007. [pdf-file]
Thomas Apel, Arnd Rösch, Gunter Winkler: Optimal control in nonconvex domains: a priori discretization error estimates. Calcolo 44(2007), 137-158. [paper | preprint]
Thomas Apel, Cornelia Pester: Clement-type interpolation on spherical domains - interpolation error estimates and application to a posteriori error estimation. IMA J. Numer. Anal. 25(2005), 310-336. [preprint | paper]
Thomas Apel, Serge Nicaise: The inf-sup condition for low order elements on anisotropic meshes. Calcolo 41(2004), 89-113. [paper | Preprint]
Thomas Apel, Sergei Grosman, Peter K. Jimack, Arnd Meyer: A new methodology for anisotropic mesh refinement based upon error gradients. Appl. Numer. Math. 50(2004), 329-341. [paper | preprint]
Thomas Apel, Nico Düvelmeyer: Transformation of hexahedral finite element meshes into tetrahedral meshes according to quality criteria. Computing, 71(2003), 293--304. [paper | preprint]
Thomas Apel, Anna-Margarete Sändig, Sergey I. Solov'ev: Computation of 3D vertex singularities for linear elasticity: Error estimates for a finite element method on graded meshes Math. Modeling Numer. Anal. (M2AN) 36(2002)6, 1043-1070. [paper | preprint], Corrigendum by Thomas Apel, Arnd Meyer and Cornelia Pester [pdf]
Thomas Apel, Volker Mehrmann, David Watkins: Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures. Comput. Methods Appl. Mech. Engrg. 191(2002), 4459-4473, DOI: 10.1016/S0045-7825(02)00390-0 [paper | preprint]
Thomas Apel, Joachim Schöberl: Multigrid methods for anisotropic edge refinement. SIAM J. Numer. Anal. 40(2002)5, 1993-2006. [paper | preprint]
Thomas Apel, H. Maharavo Randrianarivony: Stability of discretizations of the Stokes problem on anisotropic meshes.Mathematics and Computers in Simulation 61(2003) 3-6, 437-447. [ paper | preprint]
Thomas Apel, Serge Nicaise, Joachim Schöberl: A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges. IMA J. Num. Anal. 21(2001)4, 843-856. [paper | preprint]
Thomas Apel, Serge Nicaise, Joachim Schöberl: Crouzeix-Raviart type finite elements on anisotropic meshes. Numer. Math. 89 (2001), 193-223 [preprint | paper]
Thomas Apel, Serge Nicaise: The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21(1998), 519-549. [paper | preprint]
Thomas Apel: Interpolation of non-smooth functions on anisotropic finite element meshes. Math. Modeling Numer. Anal. 33(1999)6, 1149-1185. [paper | preprint]
Thomas Apel: Treatment of boundary layers with anisotropic finite elements. Z. Angew. Math. Mech. 78(1998)S3, S855-S856. [paper | preprint]
Thomas Apel, Gert Lube: Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem. Appl. Numer. Math. 26(1998), 415-433 [paper | early preprint]
Thomas Apel: Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements. Computing 60(1998), 157-174 [paper | preprint]
Thomas Apel, Gert Lube: Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math. 74(1996), 261-282 [paper | preprint.]
Thomas Apel, Frank Milde: Comparison of various mesh refinement strategies near edges. Comm. Numer. Methods Engrg. 12(1996), 373-381 [paper | preprint]
Thomas Apel, Anna-Margarete Sändig, John R. Whiteman: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19(1996), 63-85 [paper | preprint | BICOM report]
Thomas Apel, Manfred Dobrowolski: Anisotropic interpolation with applications to the finite element method. Computing 47(1992), 277-293 [paper]
Thomas Apel, Bernd Heinrich: Mesh refinement and windowing near edges for some elliptic problem. SIAM J. Numer. Anal. 31(1994), 695-708 [paper]
Submitted papers
Thomas Apel, Philipp Zilk: Isogeometric analysis of the Laplace eigenvalue problem on circular sectors: Regularity properties, graded meshes & variational crimes. arXiv:2402.16589 [math.NA] [ preprint ]
Reymart S. Lagunero, Klemens Fellner, Thomas Apel, Volker Kempf, Philipp Zilk: Lipolysis on Lipid Droplets: Mathematical Modelling and Numerical Discretisation. arXiv:2401.17935 [math.AP] [ preprint ]
Conference proceedings and other collections
Thomas Apel, Leon Eckardt, Christof Haubner, Volker Kempf: The maximal angle condition on finite elements: useful or not? PAMM · Proc. Appl. Math. Mech. 20(2020)1, e202000116.
Thomas Apel, Mariano Mateos, Johannes Pfefferer, Arnd Rösch: Superconvergent graded meshes for an elliptic Dirichlet control problem. In: Thomas Apel, Ulrich Langer, Arnd Meyer, Olaf Steinbach (eds.): Advanced Finite Element Methods with Applications - Selected Papers from the 30th Chemnitz Finite Element Symposium 2017.Lecture Notes in Computational Science and Engineering 128. Springer, Berlin, 2019, pp. 1-16.
Thomas Apel, Arnd Rösch, Gunter Winkler: Discretization error estimates for an optimal control problem in a nonconvex domain. In: A. Bermúdez de Castro and D. Gómez and P. Quintela and P. Salgado (eds.): Numerical Mathematics and Advanced Applications, Proceedings of ENUMATH 2005, the 6th European Conference on Numerical Mathematics and Advanced Applications, Santiago de Compostela, Spain, July 2005, Springer, Berlin, 2006, pp. 299-307 [paper | preprint]
Thomas Apel, Cornelia Pester: Quadratic eigenvalue problems in the analysis of cracks in brittle materials. In: Proceedings of the ECCOMAS Conference, Jyväskylä 2004 [paper]
Thomas Apel, Volker Mehrmann, David Watkins: Numerical solution of large scale structured polynomial or rational eigenvalue problems. In: F. Cucker and P. Olver (eds.): Foundations of Computational Mathematics, Minneapolis 2002. London Mathematical Society Lecture Note Series, vol. 312, Cambridge University Press, 2004. [ps-file]
Gunter Winkler, Thomas Apel, Uwe Wystup: Valuation of options in Heston's stochastic volatility model using finite element methods. In J. Hakala and U. Wystup (eds.): Foreign Exchange Risk, Risk Books, London, 2001, 283-303.
Thomas Apel, Serge Nicaise, Joachim Schöberl: Finite element methods with anisotropic meshes near edges. In M. Krizek and P. Neittaanmäki (eds.): Proc. Internat. Conf. Finite Element Methods: Three-dimensional Problems. GAKUTO Internat. Series, Math. Sci. Appl., vol. 15, Gakkotosho, Tokyo, 2001, 1-8. [paper]
Thomas Apel, Martin Berzins, Peter Jimack, Gerd Kunert, Alexander Plaks, Igor Tsukerman, Mark Walkley: Mesh Shape and Anisotropic elements: Theory and Practice. In J. R. Whiteman (ed.): The Mathematics of Finite Elements and Applications X, Elsevier, Amsterdam, 2000, 367-376 [paper]
Thomas Apel: Anisotropic mesh refinement for the treatment of boundary layers. In M. Bach, C. Constanda, G. C. Hsiao, A.-M. Sändig, P. Werner (eds.): Analysis, numerics and applications of differential and integral equations, Pitman Research Notes in Mathematics 379, Longman, Harlow, 1998, 12-16 [preprint]
Thomas Apel, Serge Nicaise: Elliptic problems in domains with edges: anisotropic regularity and anisotropic finite element meshes. In J. Cea, D. Chenais, G. Geymonat, J. L. Lions (eds.): Partial Differential Equations and Functional Analysis (In Memory of Pierre Grisvard) Birkhäuser, Boston, 1996, 18-34
Thomas Apel, Roland Mücke, John R. Whiteman: Incorporation of a-priori mesh grading into a-posteriori adaptive mesh refinement. In A. Casal, L. Gavete, C. Conde, J. Herranz (eds.): III Congreso Matematica Aplicada/XIII C.E.D.Y.A. Madrid, 1993 Madrid, 1995, 79-92 [preprint | paper]
Thomas Apel, Arnd Meyer, Michael Theß: Poisson equation and Lame system over three-dimensional domains. In J. Knop, P. Schreiber (eds.): Power Explorer User Report. Parsytec Computer GmbH, Aachen, 1995, 176-178 [preprint]
Research Reports
Thomas Apel, Markus Melenk: Interpolation and quasi-interpolation in h- and hp-version finite element spaces (extended version). ASC Report 39/2015, Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien, 2015. [ paper ]
Thomas Apel, Serge Nicaise, Johannes Pfefferer: A dual singular complement method for the numerical solution of the Poisson equation with L2 boundary data in non-convex domains.Preprint arXiv:1505.00414, 2015.
Thomas Apel, Dieter Sirch, Gunter Winkler: Error estimates for control constrained optimal control problems: Discretization with anisotropic finite element meshes.Preprint SPP1253-02-06, DFG Priority Program 1253, Erlangen, 2008.
Thomas Apel, Hans-Görg Roos: Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Preprint MATH-NM-06-2008, TU Dresden, 2008 [paper]
Thomas Apel, Uwe Reichel: Partitioning of finite element meshes for parallel computing: A case study. Preprint SFB393/96-18a, TU Chemnitz-Zwickau, 1997 [paper]
Thomas Apel, Serge Nicaise: The finite element method with anisotropic mesh grading for the Poisson problem in domains with edges. [paper]
Thomas Apel, Gundolf Haase, Arnd Meyer, Matthias Pester: Parallel solution of finite element equation systems: efficient inter-processor communication. Preprint SPC95_5, TU Chemnitz-Zwickau, 1995 [paper | note]
Thomas Apel, Gert Lube: Local inequalities for anisotropic finite elements and their application to convection-diffusion problems. Preprint SPC94_26, TU Chemnitz-Zwickau, 1994 [paper]
Thomas Apel, Roland Mücke, John R. Whiteman: An adaptive finite element technique with a-priori mesh grading. Report 9, BICOM Institute of Computational Mathematics, 1993 [paper | BICOM report]
Thomas Apel: Diskrete Modelle der Gasdynamik in gemischten Euler-Lagrange-Koordinaten. Diplomarbeit, TH Karl-Marx-Stadt (now TU Chemnitz), 1986
Thomas Apel: Numerische Verfahren zur Berechnung instationärer Strömungen. Jahresarbeit, TH Karl-Marx-Stadt (now TU Chemnitz), 1985
Manuals
Thomas Apel, Frank Milde, Uwe Reichel: SPC-PM Po 3D v4.0 - Programmer's Manual. Preprint SFB393/99-37, TU Chemnitz, 1999 [paper]
Thomas Apel, Uwe Reichel: SPC-PM Po 3D v3.3 - User's Manual. Preprint SFB393/99-06, TU Chemnitz, 1999 [paper]
Thomas Apel, Frank Milde, Michael Theß: Preprint SPC95_34, TU Chemnitz-Zwickau, 1995 SPC-PM Po 3D - Programmer's Manual. [ paper]
Thomas Apel: SPC-PM Po 3D - User's Manual. Preprint SPC95_33, TU Chemnitz-Zwickau, 1995 [ paper]
Thomas Apel: Programmbeschreibung zum 3D-Finite-Elemente-Programmsystem FEMPS3D. TU Chemnitz, 1990