Professur für Mathematik
Building 41/100, Room 5121 | |
+49 89 6004-3405 | |
+49 89 6004-4136 | |
thomas.apel@unibw.de |
Univ.-Prof. Dr. rer. nat. habil. Thomas Apel
- Member of the Scientific Committee of the annual Chemnitz Finite Element Symposium
Research interests:
- Numerical methods for optimal control problems: SPP projekt, IGDK projekt
- Approximation on anisotropic finite element meshes
- Numerical methods for boundary value problems with corner and edge singularities
- Numerical methods for singularly perturbed problems
- A posteriori error estimation ad adaptive algorithms
- Numerical methods for quadratic operator eigenvalue problems
List of Publications:
- automatically generated list: see below
- sorted list: external link
Supervised Ph.D. theses:
- Cornelia Pester: A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularities, TU Chemnitz, 2006.
- Sergey Grosman: Adaptivity in anisotropic finite element calculations, TU Chemnitz, 2006.
- Gunter Winkler: Control constrained optimal control problems in non-convex three dimensional polyhedral domains, TU Chemnitz, 2008.
- Dieter Sirch: Finite Element Error Analysis for PDE-constrained Optimal Control Problems: The Control Constrained Case Under Reduced Regularity, TU München, 2010.
- Thomas Flaig: Discretization strategies for optimal control problems with parabolic partial differential equations, UniBw München, 2013.
- Johannes Pfefferer: Numerical analysis for elliptic Neumann boundary control problems on polygonal domains, UniBw München, 2014.
- Max Winkler: Finite Element Error Analysis for Neumann Boundary Control Problems on Polygonal and Polyhedral Domains, UniBw München, 2015.
- Sergejs Rogovs: Pointwise Error Estimates for Boundary Control Problems on Polygonal Domains, UniBw München, 2018.
- Volker Kempf: Pressure-robust discretizations for incompressible flow problems on anisotropic meshes, UniBw München, 2022.