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Abstract. We extend the existing theory of formal error bounds for the
transient distribution of an aggregated (or lumped) Markov chain when
compared to the transient distribution of the original chain, for both
discrete- and continuous-time Markov chains. In the discrete-time set-
ting, we bound the stepwise increment of the error, and in the continuous-
time setting, we bound the rate at which the error grows. We then com-
pare these error bounds with relevant concepts in the literature such as
exact and ordinary lumpability as well as deflatability and aggregatabil-
ity. These concepts define stricter than necessary conditions to identify
settings in which the aggregation error is zero. We also consider possible
algorithms for finding suitable aggregations for which the formal error
bounds are low, and we analyse first experiments with these algorithms
on different models.
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1 Introduction

State aggregation in dynamic systems has been studied extensively since the
1960s (see [13]). Due to the curse of dimensionality, models with large state
spaces are often computationally intractable without state space reduction, and
one basic reduction technique is to aggregate multiple states into a single state
in the aggregated model. Conditions under which an aggregated Markov chain
is again a Markov chain are well known (see strong/weak lumpability in [8,12]),
and various cases where exact transient or stationary probabilities of the original
model can be derived from an aggregated model have been analysed (see, e.g. [3]).

However, formal error bounds for the approximation error when exact ag-
gregation is not possible have only been studied rarely. [1] has presented error
bounds for the transient distributions of discrete-time Markov chains, derived
from an aggregated model. We extend the theory developed in [1] to support
a more general way of disaggregation and to the continuous-time domain with-
out falling back on uniformisation. Subsequently, we analyse the cases where
the error bounds are zero, show optimality of the bounds, and compare them
with lumpability concepts from [2,3,7,8]. We present two different algorithms,
one based on [2] and one based on [4], with the goal to identify an aggregation
resulting in low error bounds.
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2 Preliminaries

2.1 Aggregation of Markov chains

We consider time-homogeneous discrete- and continuous-time Markov chains
(DTMCs and CTMCs) on the state space S = {1, . . . , n}. The dynamics are
given by the stochastic transition matrix P ∈ Rn×n for DTMCs, where we have
P (r, s) = P [Xk+1 = s | Xk = r] if Xk denotes the state of the DTMC at time
k. For CTMCs, the dynamics are defined via the generator matrix Q ∈ Rn×n,
where Q(r, s) is the transition rate from r to s, and Q(r, r) = −

∑
s̸=r Q(r, s).

Given an initial distribution p0 ∈ Rn, the transient distribution of a DTMC
(respectively CTMC) is given by pk = p0P

k (respectively pt = p0e
Qt), if we

interpret pk as a row vector.
An aggregation of the state space S consists of a set Ω = {Ω1, . . . , Ωm} of m

aggregates, where Ω is a partition of S, i.e. ρ ∈ Ω is a subset of S which repre-
sents all states belonging to one aggregate. The aggregation function ω : S → Ω
maps a state s to the aggregate to which s belongs, i.e. s ∈ ω(s). We ap-
proximate the dynamics of the original Markov chain by defining a stochastic
transition matrix Π ∈ Rm×m for DTMCs and a generator matrix Θ ∈ Rm×m for
CTMCs on the aggregated state space. Π(ρ, σ) for ρ, σ ∈ Ω should be an approx-
imation of the probability to transition from one aggregate state into another,
that is, an approximation of P [Xk+1 ∈ σ | Xk ∈ ρ]. Note that this probability
may now depend on k, in contrast to the probability P [Xk+1 = s | Xk = r] for
r, s ∈ S, which is time-independent. However, we consider only time-independent
approximations Π(ρ, σ). Simlarly, for CTMCs, Θ(ρ, σ) should approximate the
transition rate from aggregate ρ to aggregate σ.

The aggregation can also be applied to initial and transient distributions.
We call π0 ∈ Rm, defined via π0(σ) =

∑
s∈σ p0(s) for σ ∈ Ω, the aggregated

initial distribution and define aggregated transient distributions via πk = π0Π
k

(discrete time) and πt = π0e
Θt (continuous time). In order to obtain an approx-

imation of the transient probability for a given state in the original chain, we
consider distributions ασ ∈ Rn with support on σ ∈ Ω. As a shorthand, we write
α(s) := αω(s)(s). The value α(s) should approximate the conditional probability
of being in state s when we know that we are in aggregate ω(s), i.e. the proba-
bility P [Xk = s | Xk ∈ ω(s)]. Again, this probability is in general dependent on
time, but we only consider time-independent approximations α. We then arrive
at an approximated transient distribution p̃k ∈ Rn by the following formula:
p̃k(s) = α(s)πk(ω(s)), or, for continuous time, p̃t(s) = α(s)πt(ω(s)).

We further define the aggregation matrix Λ and the disaggregation matrix A
as follows:

Λ =

 | |
1Ω1 . . . 1Ωm

| |

 ∈ Rn×m, A =

 | αΩ1

|

...

| αΩm

|

 ∈ Rm×n (note: AΛ = I)
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We set P̃ = ΛΠA and Q̃ = ΛΘA. This implies in particular that

p̃kP̃
l = p̃kΛ︸︷︷︸

πk

Π lA = πk+lA = p̃k+l

p̃te
Q̃u = p̃t

∞∑
k=0

uk

k!
Q̃k = p̃tΛ︸︷︷︸

πt

( ∞∑
k=0

uk

k!
Θk

)
A = πte

ΘuA = πt+uA = p̃t+u

P̃ (which is stochastic) describes the approximated dynamics of the aggre-
gated chain if we blow it up again to the original state space S. It holds that
P̃ (r, s) = α(s)Π(ω(r), ω(s)), so we approximate P (r, s) by the transition prob-
ability from aggregate ω(r) to aggregate ω(s), weighted with the conditional
probability α(s) of being in state s within aggregate ω(s). We also have Q̃(r, s) =

α(s)Θ(ω(r), ω(s)) and Q̃ describes the approximated dynamics in a sense, via
the equation p̃te

Q̃u = p̃t+u. However, Q̃ is no longer a generator matrix. The row
sums of Q̃ are 0, but the negative entries are no longer confined to the diagonal.

2.2 Exact aggregation

Definition 1. Given a partition Ω of the state space of a DTMC or CTMC, we
call a probability distribution p on the state space S compatible with distribu-
tions ασ with support on σ ∈ Ω if pΛA = p.

Compatibility of p and the distributions α means that

α(s) =
p(s)∑

s′∈ω(s) p(s
′)

for all s ∈ S s.t.
∑

s′∈ω(s)

p(s′) > 0

Definition 2. We call an aggregation Ω of the state space of a DTMC (respec-
tively CTMC) with distributions αΩ1

, . . . , αΩm
and aggregated transition matrix

Π (respectively Θ) dynamic-exact if ΠA = AP (respectively ΘA = AQ).
If the initial distribution p0 is further compatible with the α distributions,

i.e. if p̃0 = p0ΛA = p0, then we call the aggregation exact.

If Ω, αΩ1 , . . . , αΩm and Π are an exact aggregation, then p̃k = pk for all k; if
the aggregation is dynamic-exact, then it only holds that p̃k = p̃0P

k (this follows
later from Corollary 1). Note the difference to p̃k = p̃0P̃

k, which is always true.
The condition ΠA = AP has appeared in the literature before. Equation

(4) on page 135 of [8] states that, if Π is set as in (1) below, and if the α
distributions are compatible with the initial distribution p0, then ΠA = AP
implies weak lumpability of the DTMC. A DTMC is called weakly lumpable for
Ω if there exists an initial distribution p0 such that the process Yk, defined by
Yk = σ ∈ Ω ⇐⇒ Xk ∈ σ, is a Markov chain. For such an initial distribution, the
probabilities πk(σ) are equal to P [Yk = σ] = P [Xk ∈ σ]. However, the concept of
weak lumpability makes no statement about whether the probability P [Xk = s]
for s ∈ σ can be accurately derived from the knowledge of P [Xk ∈ σ].
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[9, Definition 2.2] defined P to be A-lumpable if ΠA = AP and if Π is set
as in (1). [9] then noted that, given πk, an exact recovery of pk(s) is possible
if the initial distribution p0 is compatible with the α distributions. An exact
aggregation is also called backward bisimulation of type 2 in [5, Definition 4.3].

2.3 Aggregated dynamics

Choosing the aggregates. We consider different possibilities for choosing the
aggregates later. For now, assume Ω is fixed. We want to choose Π (or Θ) and
α in a way which results in a good approximation of the original dynamics.

Aggregated transition and generator matrices. We consider the fol-
lowing aggregated transition probabilities and rates for ρ, σ ∈ Ω:

Π(ρ, σ) =
∑
r∈ρ

α(r)
∑
s∈σ

P (r, s) Θ(ρ, σ) =
∑
r∈ρ

α(r)
∑
s∈σ

Q(r, s) (1)

The probability P [Xk+1 ∈ σ | Xk ∈ ρ] is approximated via the weighted average
(with weights α(r)) of the probability to transition from a single state r ∈ ρ
into any of the states in σ, since we assume that if we are in aggregate ρ, the
probability to be in state r ∈ ρ is given (approximately) by α(r). In matrix
notation, setting Π and Θ as in (1) corresponds to Π = APΛ and Θ = AQΛ.
Note that Π is again stochastic, and Θ is again a generator matrix. Different
choices for Π are discussed in [1], and the above choice yields good approxima-
tions in terms of the transient distribution in the experiments done in [1]. Only a
so-called “median-based scheme” (see [1, equation (21)]) performs better in some
settings. However, this scheme might result in a non-stochastic Π such that the
aggregated chain can no longer be considered as a Markov chain.

Conditional distributions. We also need to choose the conditional distri-
butions ασ. For DTMCs, the following definitions provided good results, and are
compatible with the aggregation techniques which will be considered later.

– The first possibility, called proportional α, is given by

α(s) =

∑
r∈S P (r, s)∑

r∈S

∑
s′∈ω(s) P (r, s′)

(2)

α(s) is the same as the probability of being in state s, conditioned on being
in the aggregate of s, after the Markov chain took a single step, starting with
a uniform distribution. Intuitively, the distributions ασ should be approxi-
mations of this type of conditional probabilities, with the exception that we
do not necessarily start with a uniform distribution. Note: proportional α is
well-defined if the chain is irreducible.

– The second possibility, called uniform α, is given by α(s) = 1
|ω(s)| .

For CTMCs, (2) cannot be used since the sum
∑

r∈S Q(r, s) could be nega-
tive. We therefore use the following for CTMCs:

α(s) =

( ∑
r∈S, r/∈ω(s)

Q(r, s)

)( ∑
r∈S, r/∈ω(s)

∑
s′∈ω(s)

Q(r, s′)

)−1

(3)
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3 Bounding the approximation error

3.1 Error bounds for DTMCs

We follow [1] to derive error bounds for the difference between the transient
distribution pk of the DTMC and the approximation p̃k. Assume Ω, Π, and the
distributions ασ are given. We do not use the particular forms of Π and α given
in (1) and (2); arbitrary choices are possible. [1] set α(s) = 1

|ω(s)| implicitly.
We demonstrate that other choices of α do not significantly change the error
bounds derived in [1]. Call ek = p̃k−pk the error after step k. We want to bound
∥ek∥1 =

∑n
s=1 |ek(s)| where ek(s) is the s-th entry of ek ∈ Rn. Note that

ek = p̃k−1 ·
(
P̃ − P + P

)
− pk−1 · P = p̃k−1 ·

(
P̃ − P

)
+ (p̃k−1 − pk−1)︸ ︷︷ ︸

ek−1

·P

=⇒ ∥ek∥1 ≤
∥∥∥p̃k−1 ·

(
P̃ − P

)∥∥∥
1
+ ∥ek−1 · P∥1 (4)

Lemma 1. Let e ∈ Rk be an arbitrary (row) vector and P ∈ Rk×k be an arbi-
trary stochastic matrix. Then ∥e · P∥1 ≤ ∥e∥1.
We omit the simple proof. As a consequence of Lemma 1 and (4), we have

∥ek∥1 ≤ ∥ek−1∥1︸ ︷︷ ︸
previous error

+
∥∥∥p̃k−1 ·

(
P̃ − P

)∥∥∥
1︸ ︷︷ ︸

error from using approximated transition probabilities

We bound the second term as follows (see [1, pages 15-17]):∥∥∥p̃k−1 ·
(
P̃ − P

)∥∥∥
1
=
∑
σ∈Ω

∑
s∈σ

∣∣∣∣∣∣
∑
ρ∈Ω

∑
r∈ρ

p̃k−1(r) ·
(
P̃ (r, s)− P (r, s)

)∣∣∣∣∣∣
=
∑
σ∈Ω

∑
s∈σ

∣∣∣∣∣∣
∑
ρ∈Ω

∑
r∈ρ

α(r)πk−1(ρ) ·
(
α(s)Π(ρ, σ)− P (r, s)

)∣∣∣∣∣∣
=
∑
σ∈Ω

∑
s∈σ

∣∣∣∣∣∣
∑
ρ∈Ω

πk−1(ρ) ·

(
α(s)Π(ρ, σ)

∑
r∈ρ

α(r)−
∑
r∈ρ

α(r)P (r, s)

)∣∣∣∣∣∣
=
∑
σ∈Ω

∑
s∈σ

∣∣∣∣∣∣
∑
ρ∈Ω

πk−1(ρ) ·

(
α(s)Π(ρ, σ)−

∑
r∈ρ

α(r)P (r, s)

)∣∣∣∣∣∣
≤
∑
σ∈Ω

∑
s∈σ

∑
ρ∈Ω

πk−1(ρ) ·

∣∣∣∣∣α(s)Π(ρ, σ)−
∑
r∈ρ

α(r)P (r, s)

∣∣∣∣∣
=
∑
ρ∈Ω

πk−1(ρ) ·
∑
σ∈Ω

∑
s∈σ

∣∣∣∣∣α(s)Π(ρ, σ)−
∑
r∈ρ

α(r)P (r, s)

∣∣∣∣∣︸ ︷︷ ︸
=: τ(ρ)

=: ⟨πk−1, τ⟩

(5)
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In particular, it follows that

∥ek∥1 ≤ ∥e0∥1 +
k−1∑
i=0

∑
ρ∈Ω

πi(ρ) · τ(ρ)︸ ︷︷ ︸
≤maxρ∈Ω τ(ρ)

≤ ∥e0∥1 + k ·max
ρ∈Ω

τ(ρ) (6)

Calculating τ(ρ) for every ρ ∈ Ω once thus allows us to bound ∥ek∥1 using
just the error at time 0 and the aggregated transition probabilities πi at times
i = 0, . . . , k − 1. Even simpler, maxρ∈Ω τ(ρ) gives an upper bound for the error
growth in every step which gives an instant linear error bound on ∥ek∥1.

3.2 Error bounds for CTMCs

We extend the above setting to continuous-time Markov chains. Set

τ(ρ) :=
∑
σ∈Ω

∑
s∈σ

∣∣∣∣∣α(s)Θ(ρ, σ)−
∑
r∈ρ

α(r)Q(r, s)

∣∣∣∣∣︸ ︷︷ ︸
=: τ(ρ, σ)

(7)

which exactly matches the definition in the case of discrete time. [1] already
proved the following: set Θ as in (1) and consider a uniformisation of the original
CTMC with uniformisation rate q. Apply the same aggregation to the resulting
DTMC and set Π as in (1). Then, the error growth in step k → k + 1 in the
DTMC can be bounded by 1

q ·
∑

ρ∈Ω πk(ρ) · τ(ρ) where τ is derived for the
aggregated CTMC as in (7). We now drop the detour via the uniformisation and
claim that the factors τ can be interpreted as a rate of error growth for CTMCs.

Theorem 1. Let et be the vector of component-wise error of the approximated
transient distribution at time t, i.e. et = p̃t − pt. Then:

(i) We have the following bound for the error at time t:

∥et∥1 ≤ ∥e0∥1 +
∫ t

0

⟨πs, τ⟩ ds where ⟨πs, τ⟩ =
∑
ρ∈Ω

πs(ρ) · τ(ρ)

and ∥et∥1 ≤ ∥e0∥1 + t ·max
ρ∈Ω

τ(ρ)

(ii) ∥et∥1 is absolutely continuous, almost everywhere (a.e.) differentiable, and

d

dt
∥et∥1 ≤ ⟨πt, τ⟩ a.e. and lim sup

u→0

∥et+u∥1 − ∥et∥1
u

≤ ⟨πt, τ⟩ ∀t ≥ 0

Before being able to prove this, we need another lemma.

Lemma 2. Assume that f : R → R is differentiable in 0, and that f(0) = 0.

Then: lim sup
u→0

|f(u)|
u

= lim
u→0
u>0

|f(u)|
u

= |f ′(0)|
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We omit the simple proof and proceed to show Theorem 1.

Proof (of Theorem 1). As (ii) immediately implies (i), it suffices to prove (ii).
First, note the following: every component of et is continuously differentiable

in t, as both pt and p̃t are continuously differentiable with respect to t. Indeed,
calculating the derivative of all components of et simultaneously, we get:

d

dt
(p̃t − pt) =

d

dt

(
p̃0e

Q̃t − p0e
Qt
)
= p̃0e

Q̃tQ̃− p0e
QtQ = p̃tQ̃− ptQ (8)∥∥∥∥ d

dt
(p̃t − pt)

∥∥∥∥
1

≤
∥∥∥p̃tQ̃∥∥∥

1
+ ∥ptQ∥1 ≤ |S| ·

(
max
r,s∈S

∣∣∣Q̃(r, s)
∣∣∣+ max

r,s∈S
|Q(r, s)|

)
As every component of et is continuously differentiable with bounded derivative,
∥et∥1 is absolutely continuous and differentiable a. e. (see [11, Section 5.4]).

∥et+u∥1 = ∥p̃t+u − pt+u∥1 =
∥∥∥p̃t (eQ̃u − eQu

)
+ (p̃t − pt) e

Qu
∥∥∥
1

≤
∥∥∥p̃t (eQ̃u − eQu

)∥∥∥
1
+
∥∥(p̃t − pt) e

Qu
∥∥
1

⊚
≤
∥∥∥p̃t (eQ̃u − eQu

)∥∥∥
1
+ ∥p̃t − pt∥1 =

∥∥∥p̃t (eQ̃u − eQu
)∥∥∥

1
+ ∥et∥1

=⇒ ∥et+u∥1 − ∥et∥1 ≤
∥∥∥p̃t (eQ̃u − eQu

)∥∥∥
1
=
∑
s∈S

∣∣∣(p̃t (eQ̃u − eQu
))

(s)
∣∣∣ (9)

where ⊚ follows from Lemma 1 since eQu is a stochastic matrix. We now take a
closer look at the right hand side. In particular, we are interested in

d

du
p̃t

(
eQ̃u − eQu

)
= p̃t

(
eQ̃uQ̃− eQuQ

)
for u=0
= p̃t

(
Q̃−Q

)
=⇒ d

du

∣∣∣∣
u=0

(
p̃t

(
eQ̃u − eQu

))
(s) =

∑
r∈S

p̃t(r)
(
Q̃(r, s)−Q(r, s)

)
Hence

lim sup
u→0

∥et+u∥1 − ∥et∥1
u

(9)
≤
∑
s∈S

lim sup
u→0

∣∣∣(p̃t (eQ̃u − eQu
))

(s)
∣∣∣

u

Lemma 2
=

∑
s∈S

∣∣∣∣∣∑
r∈S

p̃t(r)
(
Q̃(r, s)−Q(r, s)

)∣∣∣∣∣ ⊛
≤
∑
ρ∈Ω

πt(ρ) · τ(ρ) = ⟨πt, τ⟩

where ⊛ follows from the same calculation as for DTMCs, see (5). ⊓⊔

3.3 When is the error bound 0?

In order to better understand the error bound which arises from the τ factors,
this section first analyses in which cases the error bound is equal to 0, and then
shows tightness of the error bound.
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Lemma 3. Given a DTMC, a partition Ω of its state space, arbitrary distribu-
tions ασ with support on σ ∈ Ω, and arbitrary Π, it holds that

∀ρ ∈ Ω : τ(ρ) = 0 ⇐⇒ ΠA = AP
Definition 2

⇐⇒ the aggregation is dynamic-exact

The same holds for CTMCs with Π replaced by Θ and P replaced by Q.

Proof. Note: τ(ρ) = 0 if, and only if, τ(ρ, σ) = 0 (defined in (7)) for all σ. Hence,

∀ρ ∈ Ω : τ(ρ) = 0 ⇐⇒ ∀ρ, σ ∈ Ω : τ(ρ, σ) = 0

⇐⇒ ∀ρ, σ ∈ Ω :
∑
s∈σ

∣∣∣∣∣α(s)Π(ρ, σ)−
∑
r∈ρ

α(r)P (r, s)

∣∣∣∣∣ = 0

⇐⇒ ∀ρ, σ ∈ Ω : ∀s ∈ σ : α(s)Π(ρ, σ) =
∑
r∈ρ

α(r)P (r, s)

(10)

This already proves Lemma 3 since

α(s)Π(ρ, σ) = (ΠA)︸ ︷︷ ︸
∈Rm×n

(ρ, s) and
∑
r∈ρ

α(r)P (r, s) = (AP )(ρ, s)

The same calculation is true with Π replaced by Θ and P replaced by Q. Also
note that one can even show that maxρ∈Ω τ(ρ) = ∥ΠA−AP∥∞. ⊓⊔

Corollary 1. Given a DTMC or CTMC, a partition Ω, arbitrary distributions
ασ with support on σ ∈ Ω, and arbitrary Π (respectively Θ) such that ΠA = AP
(respectively ΘA = AQ, i.e. a dynamic-exact aggregation), it holds that

∥p̃k − pk∥1 ≤ ∥p̃0 − p0∥1 or, for continuous time, ∥p̃t − pt∥1 ≤ ∥p̃0 − p0∥1
In particular, if an aggregation is exact, then ∥p̃k − pk∥1 = 0 for all k (respec-
tively ∥p̃t − pt∥1 = 0 for all t).

This follows from Lemma 3 and (6) (respectively Theorem 1 for CTMCs).
We next show tightness of the error bounds.

Theorem 2. Given a DTMC or CTMC, a partition Ω, distributions ασ with
support on σ ∈ Ω, and arbitrary Π or Θ, assume that τ(ρ) > 0 for some ρ. Then,
there exists an initial distribution p0 which is compatible with the α distributions
such that ∥p̃1 − p1∥1 = ⟨π0, τ⟩ or, for CTMCs, limt→0,t>0

1
t ∥p̃t − pt∥1 = ⟨π0, τ⟩.

Proof. There must be some aggregate ρ ∈ Ω with τ(ρ) > 0. We choose p0 = αρ,
which is clearly compatible with the α distributions (hence p̃0 = p0 = αρ). In
the discrete-time case, we have p1 = αρP and p̃1 = αρΛΠA. Hence

∥p̃1 − p1∥1 =
∑
s∈S

|p̃1(s)− p1(s)| =
∑
s∈S

∣∣∣∣∣α(s)Π(ρ, ω(s))−
∑
r∈ρ

α(r)P (r, s)

∣∣∣∣∣
=
∑
σ∈Ω

∑
s∈σ

∣∣∣∣∣α(s)Π(ρ, σ)−
∑
r∈ρ

α(r)P (r, s)

∣∣∣∣∣ = τ(ρ) = ⟨π0, τ⟩
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since π0 is the Dirac measure on ρ. We proceed simlarly for the continuous-time
case, again setting p0 = αρ. Note that, as already established in (8), we have

d
dt

∣∣∣∣
t=0

(p̃t − pt)(s) =
(
p̃0Q̃− p0Q

)
(s)

p̃0=p0=αρ
=

(
αρQ̃− αρQ

)
(s)

= (αρΛΘA− αρQ) (s)

Hence, noting that ∥p̃0 − p0∥1 = 0, we obtain

lim
t→0
t>0

1

t
∥p̃t − pt∥1 =

∑
s∈S

lim
t→0
t>0

|(p̃t − pt)(s)|
t

Lemma 2
=

∑
s∈S

|(αρΛΘA− αρQ) (s)|

= . . . (as in the discrete-time case) = ⟨π0, τ⟩ ⊓⊔

4 Lumpability and aggregatability

The following definition was given in [3, Definition 1]:

Definition 3. A partition Ω = {Ω1, . . . , Ωm} of the state space of a DTMC is
called ordinarily lumpable if

∀r, r′ ∈ S s.t. ω(r) = ω(r′) : ∀σ ∈ Ω :
∑
s∈σ

P (r, s) =
∑
s∈σ

P (r′, s) (11)

For CTMCs, Ω is called ordinarily lumpable if (11) holds with P replaced by Q.

For an ordinarily lumpable partition, we have that πk(σ) =
∑

s∈σ pk(s) if Π
is set as in (1), and for any initial distribution p0 (and independently of the
choice of α). See [3, Theorem 5]. The same holds in the continuous-time case.
[3, Definition 1] also defines exact lumpability:

Definition 4. A partition Ω = {Ω1, . . . , Ωm} of the state space of a DTMC is
called exactly lumpable if

∀s, s′ ∈ S s.t. ω(s) = ω(s′) : ∀ρ ∈ Ω :
∑
r∈ρ

P (r, s) =
∑
r∈ρ

P (r, s′) (12)

For CTMCs, Ω is called exactly lumpable if (12) holds with P replaced by Q. Ω
is further called strictly lumpable if it is both ordinarily and exactly lumpable.

[2, Definition 2.1] also defines lumpability. Note that this definition of lumpa-
bility agrees with the definition of ordinary lumpability given above. [2, Defini-
tion 2.1] further defines deflatability and aggregatability:

Definition 5. A partition Ω of the state space of a DTMC, together with dis-
tributions ασ ∈ Rn with support on σ ∈ Ω, is called deflatable if

∀r ∈ S : ∀s ∈ S : P (r, s) = α(s) ·
∑

s′∈ω(s)

P (r, s′) (13)

The partition Ω, together with distributions α, is further called aggregatable if
it is deflatable and if Ω is ordinarily lumpable.
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Note that aggregatability implies that P̃ = P by [2, Proposition 2.6] (if Π is
set as in (1)). Definition 5 cannot be extended to CTMCs easily.

Proposition 1. Assume an irreducible DTMC or CTMC is exactly lumpable
w.r.t. the partition Ω. When setting Π (respectively Θ) as in (1) and using
proportional α as in (2) (respectively (3)) or uniform α, then it holds that

τ(ρ) = 0 ∀ρ ∈ Ω and α(s) =
1

|ω(s)|
∀s ∈ S

Proof (Sketch). First, we look at DTMCs. Assume α is set as in (2), and ω(s) =
ω(s′) = σ. Then:

α(s′) ·
∑
r∈S

∑
s′′∈σ

P (r, s′′) =
∑
r∈S

P (r, s′)
⊛
=
∑
r∈S

P (r, s) = α(s) ·
∑
r∈S

∑
s′′∈σ

P (r, s′′)︸ ︷︷ ︸
>0 by irreducibility

where ⊛ holds by exact lumpability. Hence α(s) = α(s′). For CTMCs and α
as in (3), the calculation is similar. Now, one way to proceed is to show that
τ(ρ) = 0 for all ρ is equivalent to:

∀s, s′ s.t. ω(s) = ω(s′) : ∀ρ ∈ Ω :

∑
r∈ρ α(r)P (r, s)

α(s)
=

∑
r∈ρ α(r)P (r, s′)

α(s′)
(14)

We skip the proof of equivalence here, but it relies only on simple calculations
based on (10). More details are given in [10, Proposition 8] or in [7, Section 2
and 3], where the same equivalence is shown in a slightly different context (note
that (14) is equal to [7, (Cond1) on page 771]). If we plug α(s) = 1

|ω(s)| into (14),
we get the definining equation (12) of exact lumpability, finishing the proof. ⊓⊔

Proposition 2. Given an irreducible DTMC and a partition Ω, assume

∀r ∈ S : ∀s ∈ S : P (r, s) = c(s) ·
∑

s′∈ω(s)

P (r, s′)

for constants c(s) ∈ [0, 1] which only depend on s ∈ S (this is equivalent to the
existence of distributions α s.t. Ω and α are deflatable). When setting Π as in
(1) and using proportional α as in (2), it holds that

τ(ρ) = 0 ∀ρ ∈ Ω and α(s) = c(s) ∀s ∈ S

We omit the proof of this proposition, it relies only on basic calculations
and the equivalence of τ(ρ) = 0 for all ρ to (14). We next show that none of
the lumpability concepts above are necessary conditions for τ(ρ) = 0 for all
ρ. Except for [7], a large part of the literature has thus treated stricter than
necessary conditions in order for dynamic-exact aggregation to be possible.

Proposition 3. There are partitions Ω of the state space of a DTMC and prob-
ability distributions ασ with support on σ ∈ Ω which are dynamic-exact (when Π
is set as in (1)), but where Ω is neither ordinary lumpable, nor exactly lumpable,
nor are Ω and the distributions α deflatable.
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Proof. Consider the state space S = {1, 2, 3}, the aggregation Ω = {{1}, {2, 3}}
and α(1) = 1, α(2) = 1

4 , α(3) =
3
4 as well as the DTMC given by:

P =

0 1
4

3
4

0 1
2

1
2

4
9

1
18

1
2

 (1)
=⇒ Π =

(
0 1
1
3

2
3

)
, A =

(
1 0 0
0 1

4
3
4

)
, Λ =

1 0
0 1
0 1


ΠA = AP holds, i.e. this aggregation is dynamic-exact and τ({1}) = τ({2, 3}) =
0. We show that none of the stated properties hold for Ω and α:

– ordinary lumpability: since ω(2) = ω(3), by (11) in Definition 3, we would
need 1 = P (2, 2) + P (2, 3) = P (3, 2) + P (3, 3) = 5

9 which is clearly not true.
– exact lumpability: since ω(2) = ω(3), by (12) in Definition 4, we would need

5
9 = P (2, 2) + P (3, 2) = P (2, 3) + P (3, 3) = 1 which is clearly not true.

– deflatability: since ω(2) = ω(3), by (13) in Definition 5, we would need

1

2
= P (2, 2) = α(2)

∑
s∈{2,3}

P (2, s) = α(2) · 1 =⇒ α(2) =
1

2

1

18
= P (3, 2) = α(2)

∑
s∈{2,3}

P (3, s) = α(2) · 5
9

=⇒ α(2) =
1

10

so Ω and α are not deflatable, and there is no other deflatable choice for α.

In fact, there is no aggregation with Ω ̸= {S} and Ω ̸= {{1}, {2}, {3}} which is
ordinary or exactly lumpable, or for which deflatable α distributions exist. ⊓⊔

For this example, neither using proportional α as in (2) nor uniform α delivers
the choice of α which results in a dynamic-exact aggregation. We get α(1) = 1,
α(2) = 29

92 ≈ 0.315, α(3) = 63
92 ≈ 0.685 for proportional α. The proposed ways of

calculating α can thus only be seen as an approximation of the optimal choice.

5 Choosing the aggregates

We want to choose a partition Ω such that the error bounds τ(ρ) are low, as this
results in a good approximation p̃k of pk. In order to reduce the computational
effort required to calculate p̃k, we would also like |Ω| = m ≪ n = |S|. An ideal
algorithm would receive a parameter ε as input and determine the partition Ω
with the fewest aggregates satisfying maxρ∈Ω τ(ρ) < ε. This would guarantee a
stepwise error (or error growth rate) of at most ε (see (6) and Theorem 1 (i)).
Solving this problem exactly will in general result in a runtime exceeding the
time needed to compute pk exactly for the original chain. We therefore consider
different ways of choosing an Ω which is close to the optimal solution.

5.1 Almost aggregatability

We consider three algorithms based on [2] which identify almost aggregatable
partitions for which the error bounds are low by Proposition 2. These algorithms
use the singular value decomposition of P .
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– SVD sgn: proposed as a simple algorithm in [2] with only limited practical
applicability due to its numerical instability.

– SVD seba: proposed as a stable variant in [2] via a combination with [6].
– SVD dir: a new algorithm devised by us based on SVD sgn. The SVD

algorithm from [2] basically assigns a (cropped) row vector of the right hand
matrix V of the singular value decomposition UΣV T of P to every state in
the Markov chain. SVD sgn then only analyses the sign structure of these
vectors, while SVD dir exploits the fact that the vectors of two states in the
same aggregate should point in approximately the same direction.

The three variants of the SVD algorithm can only be applied to DTMCs (ag-
gregatable was only defined for DTMCs in Definition 5). In order to decide how
coarse the aggregation should be, all three algorithms receive a parameter ε as
input which is used to decide where to cut off the row vectors of V used for
partitioning, i.e. ε is used to decide which dimension these vectors should have.
Details are given in [10, Section 5.2].

5.2 ε-almost exact lumpability

By Proposition 1, if Ω is exactly lumpable, Π is set as in (1) and if proportional
α as in (2) or uniform α is used, then the error bound is zero. In the general case,
it is more likely that a partition exists which is close to being exactly lumpable.
This motivates the following definition:

Definition 6. We call a partition Ω ε-almost exactly lumpable if:

∀s, s′ ∈ S s.t. ω(s) = ω(s′) :
∑
ρ∈Ω

∣∣∣∣∣∑
r∈ρ

P (r, s)−
∑
r∈ρ

P (r, s′)

∣∣∣∣∣ ≤ ε

We now develop an algorithm (see Algorithm 1, similar to the ideas from [4,
p. 269]) which finds an ε-almost exactly lumpable partition. It works for DTMCs
as well as CTMCs. For a given ε, the algorithm should find a partition which is
as coarse as possible and still satisfies ε-almost exact lumpability. The idea of
the algorithm is as follows: we start with the initial partition Ω = {S}, which is
then successively refined. At every refinement step, for every aggregate σ ∈ Ω
and for all states s ∈ σ, we construct vectors of incoming probabilities

inc(s) =

(∑
r∈Ω1

P (r, s) , . . . ,
∑

r∈Ωm

P (r, s)

)
∈ Rm

where m is the current number of aggregates in Ω. By Definition 6, we have
that the current partition Ω is ε-almost exactly lumpable if, and only if, we
have that ∥inc(s)− inc(s′)∥1 ≤ ε for all states s and s′ belonging to the same
aggregate σ. If this is not the case, the algorithm proceeds with the refinement
by partitioning the states into smaller aggregates. This procedure stops when an
ε-almost exactly lumpable partition is found (at the latest when every aggregate
consists of a single state).
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Algorithm 1 Calculating almost exactly lumpable partitions
Input: a Markov chain, defined via its transition matrix P on state space S,

and the parameter ε (a generator matrix Q can be used instead of P )
Output: an aggregation function ω

whose corresponding partition is ε-almost exactly lumpable
1: ω(1) ← ((s ∈ S) 7→ 1) ▷ aggregation function
2: i← 1 ▷ iteration counter
3: m← 1 ▷ number of aggregates
4: repeat
5: mold ← m ▷ saves number of old aggregates
6: m← 0 ▷ counts number of new aggregates
7: for all j ∈ {1, . . . ,mold} do ▷ loop over old aggregates
8: for all s ∈ {r ∈ S : ω(i)(r) = j} do ▷ loop over states in same aggregate
9: inc(s)← 0 ∈ Rmold

10: for all k ∈ {1, . . . ,mold} do ▷ loop over potential splitters
11: inc(s)k ←

∑
r∈S:ω(i)(r)=k P (r, s) ▷ inc. prob. from agg. k to state s

12: end for
13: end for
14: C ← cluster({r ∈ S : ω(i)(r) = j}, inc, ε) ▷ see below
15: for all σ ∈ C do ▷ loop over clusters
16: for all s ∈ σ do
17: ω(i+1)(s)← m+ 1 ▷ states in σ are assigned to the same agg.
18: end for
19: m← m+ 1 ▷ increment aggregate number
20: end for
21: end for
22: i← i+ 1
23: until mold = m ▷ stop when no aggregates were split
24: return ω(i)

cluster(T, f, ε) takes a subset of states T ⊆ S, a function f : T → Rk and
ε > 0 as input. The output is a partition C of T such that for any cluster σ ∈ C
and any two states s, s′ ∈ σ, we have that ∥f(s)− f(s′)∥1 ≤ ε. We use Python
and scipy.cluster.hierarchy.fclusterdata to calculate the clustering.

5.3 Experiments

We compare the performance of SVD sgn, SVD seba, SVD dir, and Algorithm 1
by comparing the error bounds given by the τ factors resulting from the aggre-
gations returned by the different algorithms – the lower, the better. By default,
we calculate the α distributions as in (2), and Π (or Θ) is set as in (1).

In Figure 1, we consider a setting for which the SVD algorithms were de-
signed. We see that the SVD variants (except SVD seba) perform better than
Algorithm 1 for almost aggregatable chains. The higher stability of SVD dir pays
off in comparison to SVD sgn: we see a sharp drop in the error bounds around 20
aggregates (the number of aggregates in the almost aggregatable partition). For
SVD sgn, the drop is more a gradual decrease. Algorithm 1 does not identify the
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Fig. 1. SVD sgn, SVD dir, SVD seba, and Algorithm 1 executed on 100 randomly
generated almost aggregatable DTMCs with 200 states, 20 aggregates and a probabil-
ity of 0.5 to have no transition between a particular pair of aggregates. The almost
aggregatable DTMCs were obtained by random perturbation of the transition matrix
of an aggregatable DTMC with a magnitude of 0.002. Each plotted point is an average
resulting from running the algorithms with a particular fixed input parameter ε on the
100 DTMCs. Multiple different parameters are used to obtain the different points.

almost aggregatable partition. SVD seba performs similarly to SVD dir for a low
number of aggregates, but there is a sudden change around 20 aggregates when
SVD seba starts to perform worse than all other algorithms. This is due to the
fact that we limited the maximum number of iterations of the SEBA algorithm
(see [6, Algorithm 3.1]) to 300 iterations because of its high runtime. Regardless
of the number of maximum iterations, we could never observe SVD seba per-
forming significantly better than SVD dir in all our experiments. The latter is
therefore a good alternative. For details on implementation, refer to [10].

We also considered the compositional stochastic process algebra model RSVP
from [14], comprising a lower and upper network channel with capacities for M
and N calls, and a number of identical mobile nodes which request resources
for calls. Due to the identical mobile nodes, lossless aggregation is possible.
Comparing the different algorithms in Figure 2 for a uniformisation of this model,
we see that only Algorithm 1 identifies the lossless aggregation (which is exactly
lumpable). The SVD variants perform much worse. Figure 2 also compares the
two different ways to calculate α: proportional α as in (2) and uniform α.

6 Conclusion & outlook

We extended the error bounds for the difference between the transient distribu-
tion of an aggregated chain and the original chain originally derived in [1] to a
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Fig. 2. SVD sgn, SVD dir, and Algorithm 1 executed on the uniformisation of the
model from [14] with M = 7, N = 5 and 3 mobile nodes, resulting in a total of 842
states. By symmetry of the mobile nodes, a lossless reduction to 234 states is possible.

more general setting and proved that these bounds are tight. We also showed a
relation of the error bounds to existing lumpability concepts, and we compared
algorithms which identify different settings in which the error bounds are low.
To obtain more reliable results, these algorithms have to be compared with other
approaches in real-world applications in the future, and a combination with the
adaptive aggregation from [1] should be investigated. Another interesting topic
would be to develop an efficient algorithm which finds an approximate solution
to ΠA = AP , i.e. the most general case in which the error bounds are zero.
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