Machine Learning-based Decision Support Tools for Digital Twins

Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr

Rudy Milani, Univ.-Prof. Dr. Stefan Pickl, Prof. Dr. Maximilian Moll Institut für Theoretische Informatik, Mathematik und Operations Research

Finanziert von der Europäischen Union NextGenerationEU

Crack Detection Problem

- Four-point bending test with a cyclic load on a steelreinforced concrete beam specimen.
- The analysis is divided into two components: fixed-ti-me and fixed-position.
- Fixed-time \rightarrow Evaluate the extreme values over all the beam measurements.
- Fixed-position \rightarrow Time series analysis of specific points

Methodology

Results and Future Works

Braml, Thomas, et al. "Erfordernisse an die Datenaufnahme und verarbeitung zur Erzeugung von intelligenten Digitalen Zwillingen im Ingenieurbau ". In Innsbrucker Bautage 2022 (eds Berger, J.) (Studia, 2022), 31-49.

Milani, Rudy, et al. "Automatic concrete bridge crack detection from strain measurements: a preliminary study." International Conference on Critical Information Infrastructures Security. Cham: Springer Nature Switzerland, 2022.

-0.0150-0.0125-0.0100-0.0075-0.0050-0.0025 0.0000 0.0025 0.0050 x-Coordinate [m]

- Fixed-time results \rightarrow 80% cracks identified in different loading cycles (fixed parameters).
- Fixed-position results \rightarrow simple rule for damaged regions through linear approximation of trend.
- Future Work \rightarrow Find general rule for parameter settings.

Biogas Problem

Optimization of the Biogas production scheduling considering:

- 1. Biogas production estimation \rightarrow Good approximation of gas curve ($R^2=0.92$)
- 2. Hourly energy market prices forecasting \rightarrow Decent Rolling output first hours ($R^2 = 0.94, 0.86, 0.78$)
- 3. Energy demand prediction \rightarrow To improve hourly demand identification (R²=0.80)

Methodology

Results and Future Works

Explainable RL in Digital Twins

- Reduction of the residual errors between virtual representations and the physical systems
- Difficult to comprehend \rightarrow Novel automatic explainable approach:
- 1. Bayesian Network \rightarrow Causal reasoning
- 2. Recurrent Neural Networks (RNNs) \rightarrow The distal information (data enabled by chain of actions)
- 3. Importance metrics \rightarrow Relevant information recognition

Methodology

Milani, Rudy. "Towards an Automatic Ensemble Methodology for Explainable Reinforcement Learning." 2024 IEEE 14th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2024

Results and Future Works

- Computational results on Taxi \rightarrow Accuracy 99.88% (Literature best 86.19%)
- Human evaluation \rightarrow Best average scores and statistically significant differences (7/7 for "why" and 3/7 for "why not")
- Future works \rightarrow Engineering and robotics applica-tions

Milani, Rudy, et al. "A Bayesian Network Approach to Explainable Reinforcement Learning with Distal Information." Sensors 23.4 (2023): 2013.

www.dtecbw.de/risk-twin

RISK.twin WiMi-Workshop 25.04.2024

rudy.milani@unibw.de