
Background:

▪ In Generation IV reactor concepts such as the Lead-Cooled Fast

Reactor or the Molten Salt Reactor, liquid metals (e.g. Pb) or molten

salts (e.g. LiF-BeF2) are utilized as coolants

Motivation:

▪ The computational effort ~𝐿𝑥
2 𝐿𝑦𝑅𝑒𝜏

4𝑃𝑟3/4 for the calculation of the

entire cooling circuit with turbulence-resolving direct numerical

simulations (DNS) is prohibitively high

▪ Large eddy simulation (LES) resolves only large turbulent

structures, while small turbulent structures are modeled

▪ Common modeling approaches for the SGS

heat flux are based on the Reynolds analogy

▪ The Reynolds analogy uses the similarity

between the velocity and temperature fields for

𝑃𝑟 = 1 to approximate the SGS heat flux via the

turbulent momentum transport

▪ For coolants where 𝑃𝑟 ≠ 1 𝛿𝑚 ≠ 𝛿𝑡 , the

Reynolds analogy is no longer valid, therefore

alternative modeling approaches are required
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liquid metal: Pb molten salt: LiF-BeF2
Prandtl number 0.02 (at 450°𝐶, 1 𝑏𝑎𝑟) 13 (at 700°𝐶, 1 𝑏𝑎𝑟)
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Velocity and temperature fields based on DNS database by Alcántara-Ávila et al. (2018) and Alcántara-Ávila and Hoyas (2021)

▪ The Prandtl number describes the ratio

between the momentum diffusivity and the

thermal diffusivity

▪ 𝑃𝑟 = 1: Temperature fluctuations extend to

scales as small as the smallest turbulent

length scales of the velocity field

▪ 𝑃𝑟 ≠ 1: A separation occurs between the

smallest turbulent length scales of the

temperature and velocity fields

▪ 𝑃𝑟 > 1 : Temperature fluctuations reach

smaller scales than the smallest turbulent

length scales of the velocity field

▪ The size of the smallest turbulent length

scales is decisive for the required mesh

resolution

Computational Setup:

▪ Rectangular thermal channel flow

▪ Channel size of 2𝜋𝐻 ⨯ 2𝐻 ⨯ 𝜋𝐻

▪ Periodic in 𝑥- and 𝑧-directions

▪ Flow controlled by a constant

pressure gradient, considered as

incompressible, and subjected to

a uniform wall heat flux

▪ Determination of the SGS heat flux by explicit filtering of DNS data

▪ DNS database by Alcántara-Ávila et al. (2018) and Alcántara-Ávila

and Hoyas (2021) for various Prandtl numbers

▪ Diffusion-based filter method similar to a Gaussian filter with the

dimensionless filter widths of Δ𝑥𝑖
+ = 30; 60

▪ Assessment of two different turbulence models: 

▪ Gradient diffusion hypothesis model (functional LES model)

▪ Clark’s gradient model (structural LES model)

▪ by determination of the alignment and the correlation coefficient

between the SGS heat flux and turbulence models

Methodology: a-priori analysis 
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Correlation coefficient:

+1 perfect linear relationship

 0 no linear relationship

−1 negative linear relationship

Alignment:

▪ For 𝑃𝑟 = 0.007 the alignment for the structural model is nearly one,

this means the SGS heat flux is colinear to the structural model

▪ For 𝑃𝑟 = 0.007 and 𝑃𝑟 = 1 there is a strong linear relationship

between the SGS heat flux and the structural model

▪ The alignment and correlation coefficient of the structural model

decreases with increasing Prandtl number and filter width

▪ The functional model achieves the highest values for the alignment

and the correlation coefficient for 𝑃𝑟 = 1 , where the Reynolds

analogy is valid, for 𝑃𝑟 ≠ 1 the alignment and the correlation

coefficient of the functional model decrease

▪ The structural model performs significantly better than the

functional model and is promising for further a-posteriori analysis

Results and discussion  
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