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A B S T R A C T

Standardized, collaborative decision-making processes have already been implemented at some network-
relevant airports, and these can be further enhanced through data-driven approaches (e.g., data analytics,
predictions). New cost-effective implementations will also enable the appropriate integration of small and
medium-sized airports into the aviation network. The required data can increasingly be gathered and processed
by the airports themselves. For example, Automatic Dependent Surveillance-Broadcast (ADS-B) messages are
sent by arriving and departing aircraft and enable a data-driven analysis of aircraft movements, taking into
account local constraints (e.g., weather or capacity). Analytical and model-based approaches that leverage these
data also offer deeper insights into the complex and interdependent airport operations. This includes systematic
monitoring of relevant operational milestones as well as a corresponding predictive analysis to estimate
future system states. In fact, local ADS-B receivers can be purchased, installed, and maintained at low cost,
providing both very good coverage of the airport apron operations (runway, taxi system, parking positions)
and communication of current airport performance to the network management. To prevent every small and
medium-sized airport from having to develop its own monitoring system, we present a basic concept with
our approach. We demonstrate that appropriate processing of ADS-B messages leads to improved situational
awareness. Our concept is aligned with the operational milestones of Eurocontrol’s Airport Collaborative
Decision Making (A-CDM) framework. Therefore, we analyze the A-CDM airport London–Gatwick Airport as
it allows us to validate our concept against the data from the A-CDM implementation at a later stage. Finally,
with our research, we also make a decisive contribution to the open-data and scientific community.
. Introduction

Shared situational awareness at airports enables operational chal-
enges to be successfully addressed. In this context, performance-based
ollaboration among airport stakeholders enabled by the concept of air-
ort collaborative decision making (A-CDM) (Eurocontrol Airport CDM
eam, 2017) could improve the efficiency of both the aviation network
nd the local airport (Pickup, 2016). A-CDM is an information-sharing
rocess focused on defined operational milestones along aircraft tra-
ectories and is part of the European Air Traffic Management Master
lan under the Single European Sky initiative (SESAR JU, 2015).
ithin the Airport Operations Center (SESAR Joint Undertaking, 2016),

takeholders monitor the agreed performance targets in their respective
esponsibility areas and implement appropriate control measures in the
vent of (expected) deviations at both land and airside (Günther et al.,
006; Helm et al., 2015; Kosanke and Schultz, 2015).

∗ Corresponding author.
E-mail address: michael.schultz@tu-dresden.de (M. Schultz).

The digitalization of operational processes at and around airports
will facilitate further optimization of operations and the development
of new processes soon (Airports Council International Europe, 2018).
New technological improvements will take place at the local and avia-
tion network level to provide seamless passenger and freight transport.
The amount of data exchanged in the airport environment has increased
significantly and with it the need for methods to analyze this data
and turn it into knowledge. Using data from a variety of sources
(including publicly available data), airports can make better predictions
about future system states and the efficacy of mitigation strategies.
Data analytics and machine learning approaches can reveal hidden
correlations in the complex airport system.

In our work, we investigate the capabilities of data-driven perfor-
mance monitoring for small and medium-sized airports, which could
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be extended to include predictive capabilities in a future research
step. Thus, we introduce a concept of data-driven airport management
where operational milestones are derived from aircraft ADS-B messages
(A-CDM-lite). We use London–Gatwick Airport as a demonstration en-
vironment to show our approach to data preparation and milestone
calculation. Although it is not one of the small and medium-sized
airports, we chose it for the following reasons. First, the airport is
well covered with ADS-B receivers so that not only flying aircraft
around the airport but also their ground movements on the entire
apron can be captured and processed. Second, the airport has a simple
runway layout, so extensive differentiation of complex runway or apron
procedures is not required. Third, Gatwick is already an A-CDM airport,
and the next step in our research is to compare the results of our
approach with the actual A-CDM milestones.

After this introduction of the performance management in the
airport environment and a brief literature review is given in Section 2.
Section 3 provides a deeper insight into the fundamentals of the
A-CDM concept and potential roadblocks for the implementation at
small/medium-sized airports. In Section 4, the A-CDM-lite concept for
small and medium-sized airports is proposed considering a tailored set
of milestones derived from locally received ADS-B messages. Section 5
provides our methodology to derive an operational representation of
the underlying airport environment. In Section 6 we use 10 days of
operational data for analyzing the actual airport performance. Our
contribution closes with a discussion and conclusion.

2. Literature review

Various data analytics and machine learning approaches are already
being used to gain deeper insights into the following research topics of
the air traffic domain.

• Clustering of aircraft trajectories (Basora et al., 2018; Gariel et al.,
2011; Basora et al., 2017; Olive and Morio, 2019),

• Detection of anomalies (Olive et al., 2018; Das et al., 2010; Olive
and Bieber, 2018; Basora et al., 2019),

• Prediction of aircraft trajectories (Lv et al., 2015; Di Ciccio et al.,
2016; Liu et al., 2018),

• Development of dynamic airspace designs (Gerdes et al., 2016,
2018),

• Analyses of runway and apron operations (Olive and Bieber,
2018; Herrema et al., 2019; Schultz et al., 2019a,b), or

• Airport performance evaluation considering local weather events
(Reitmann and Schultz, 2018; Reitmann et al., 2017).

Further initiatives to use open surveillance data (ADS-B) to improve
he state of the art are already commonplace, especially in the field of
ircraft modeling (Sun et al., 2018; Sun, 2019).

With the current contribution, we consequently follow a research
genda for data-driven management of airport operations starting
ith the concept of performance-based, integrated airport manage-
ent (Helm et al., 2015). A first general application aims at the

nalysis of operational scenarios to mitigate impacts of local capacity
estrictions (Günther et al., 2016). A systematic analysis of correla-
ions between airport performance and (severe) weather conditions
t European airports (Schultz et al., 2018) contributes to a reliable
odel of local airport delays in the European air traffic network. This

omprehensive analysis was improved by data-driven approaches to
orecasting operational delays using neural networks (Reitmann and
chultz, 2018; Reitmann et al., 2017). With a focus on specific airport
perations, a next step was taken by looking into the airport system
o forecast particular operations at the airport ground, such as runway
ccupancy times (Herrema et al., 2019). We continue this research by
rocessing ADS-B messages and adopting the concept of operational
ilestones. This will provide a reliable basis for follow-up data-based
2

esearch activities.
Table 1
Provision of information from airport stakeholders (cf. European Telecommunications
Standards Institute (2010)).

Stakeholder Information provided

Air navigation service provider estimated arrival/departure times
times based on planning
data provided by handling agent
runway in use and runway capacity

Apron control landing times
in-/off –block times
start-up approval
take-off times

Airport operator stand and gate allocation
environmental information
reduction in airport capacity
reduction in runway availability
aircraft movement data
special events (such as air shows, etc.)

Ground handling changes in turnaround times
target off-block time updates
planning data
information concerning deicing

Airlines priority of flights
flight plans
aircraft registration and type

3. Data-driven airport management

Reliable implementation of data-driven approaches needs to address
diverse airport environments and consider the participation and bene-
fits of local stakeholders (Corrigan et al., 2015). Each stakeholder has
their view of the airport system and could provide a different set of
data (Table 1). The data provided by various parties are consolidated
and processed into a reliable basis for decision-making.

3.1. Airport collaborative decision making

A-CDM supports communication between stakeholders and the ex-
change of information in aircraft handling at airports. This leads to
improved process compliance, management of deviations from agreed
performance targets, and optimization of operational processes. This
requires appropriate processes and facilities for efficient information
exchange between all stakeholders, as well as effective implementation
of A-CDM procedures and the necessary technical architectures. The
estimated cost for the full implementation of an A-CDM system is about
2.5 Me, and the annual maintenance cost is about 150 ke (Pickup,
2016). The introduction of A-CDM contributes, for example, to delay
reduction in traffic flow management (−10.3%), shorter taxi times
(−7%), or lower fuel consumption (−7.7%) (Pickup, 2016) and thus
seems to be a reasonable solution for large airports operating close
to capacity (Eurocontrol, 2008). With a focus on airports, A-CDM will
provide solutions, which are generating cost reductions, environmental
benefits, capacity optimization, and efficiency improvements. This is
achieved, for example, by shortening taxi times (−7%), decreasing fuel
burn (−7.7%), and reducing ATFM (Air Traffic Flow Management)
delay (−10.3%) (Pickup, 2016). For a complete implementation of
A-CDM, several aspects have to be considered (Eurocontrol Airport
CDM Team, 2017), such as:

(1) a common concept of data sharing,
(2) measurements for the introduced milestones,
(3) determination of variable taxi times,
(4) implementation of a pre-departure sequencing,
(5) concept to manage adverse conditions,

(6) collaborative management of flight updates.



Journal of Air Transport Management 99 (2022) 102164M. Schultz et al.
From a cost/benefit perspective, full implementation of A-CDM is
not favorable for small and medium-sized airports. However, to provide
benefits for the entire air transportation system, local implementations
must be both tailored to the corresponding airport environment and
cost-effective. The use of ADS-B data and the development of a data-
driven management system aligned with this database will provide a
reliable foundation for this.

The effort required to operate an ADS-B receiver network at the
airport (data acquisition, processing, storage) is several orders of mag-
nitude smaller. For example, a dedicated receiver with an efficient
antenna costs less than 1000 e. With this significantly reduced ef-
fort, the question arises for which airport a comprehensive A-CDM
implementation should be considered and what (local) benefits can be
expected. However, A-CDM does still not appear to be a reasonable
solution for small and medium-sized airports, which generally do not
have capacity problems and have only a minor impact on the perfor-
mance of the air transport system. This gap can be closed, if already
broadcast data can be cost-efficiently processed and used for local,
integrated airport management and made available to the network
management.

3.2. A-CDM milestones

The A-CDM concept consists of 16 milestones along the aircraft
trajectory, focusing on an airport-centric perspective (see Fig. 1). These
milestones are monitored by the corresponding stakeholders. In the
context of airport operations, Target Off-Block Time (TOBT) is the
primary aircraft-related control parameter. The entire A-CDM process
is based on estimating TOBT as precisely and reliably as possible so that
all stakeholders can align their processes accordingly.

Fig. 1. Defined milestones along aircraft trajectory according to the A-CDM concept
with: calculated cake off time (CTOT), actual take-off time (ATOT), actual landing time
(ALDT), actual in/off-block time (AIBT, AOBT), target off-block time (TOBT), target
start-up approval time (TSAT), aircraft ready time (ARDT), actual start-up request time
(ASRT), actual start-up approval time (ASAT), actual take off time (ATOT) (Eurocontrol
Airport CDM Team, 2017).

The Eurocontrol Airport CDM Team (2017) defines the following
milestones as highly recommended for the efficient implementation of
an integrated airport management (numbers are consistent with Fig. 1).

(1) Flight plan activation by air traffic control (3 h before estimated
off block time)

(2) Calculated take off time (2 h before estimated off block time)
(3) Take off from outstation
(4) Local radar update (flight enters corresponding flight informa-

tion region)
(5) Flight begins final approach phase to the destination airport
(6) Aircraft touchdown on runway (actual landing time)
(7) Arrival time of an aircraft in-blocks

(10) Time at which air traffic control issues the target start-up ap-
proval time

(15) Time the aircraft pushes back/vacates the parking off-block
(16) Time of aircraft takeoff from the runway
3

At the current stage of development of the A-CDM-lite concept,
we assume that only data from the vicinity of the airport can be
processed. Therefore, milestone (4), the local radar update, is the
first milestone we consider. In the future, when multiple A-CDM (lite)
implementations are active in network management, information from
and to connected airports can also be taken into account. Concerning
the highly recommended milestones, only the determination of the
target start-up approval time (TSAT) provided by Air Traffic Control
(ATC) seems to be problematic when only aircraft position information
is available. Given the close relationship to TOBT (provided by ground
handling) and Target Take-off Time (TTOT) in the overall control loop
for the flow and capacity management (see Fig. 2), a substitute for this
milestone must be found.

Fig. 2. Calculation of target start-up approval time (Harris Orthogon GmbH, 2015).

Besides the milestone approach, the introduction of variable taxi
times (VTT) is currently under consideration at A-CDM airports. Today,
static values are still used for taxi times. Given the dynamic changes on
the apron, these are not suitable to enable optimal use of apron/taxi
capacities. Especially in times of high traffic demand, the associated
loss of capacity leads to delays caused by operational inefficiencies
at the airport. Thus, the use of VTT could lead to a sustainable im-
provement in airport performance. As Fig. 2 shows, when the (TOBT)
is announced, the expected traffic demand and active movements on
the taxiway/runway system could be determined and be available as
input to the VTT calculation. Other input variables that could be used
in the VTT calculation include current status information and historical
performance data.

For a complete ACDM implementation, the following steps still
need to be implemented. In order to enable an user-oriented pre-
departure sequencing, individual airline priorities should also be taken
into account in the future. To handle significant disruptions in airport
operations, collaborative approaches for mitigation and/or recovery
strategies must be implemented. Finally, the timely exchange of flight
update messages (network manager) and departure planning informa-
tion (airport) ensures that local and network-related information is
efficiently integrated at the respective planning level.

3.3. Automatic dependent surveillance broadcast

To test our concept, we use publicly available data for which no
access rights need to be negotiated and the equipment and maintenance
costs are low (ADS-B networks). Airports should not only record their
data, but also share it in these networks. Many stakeholders can benefit
from this open-data approach. For example, an airport could imme-
diately receive all departure information from its connected airports
(in addition to the first three A-CDM milestones) or the research
community could improve operational predictions using the latest de-
velopments in machine learning. Automatic Dependent Surveillance
Broadcast consists of the following elements.

• automatic: aircraft transmits data periodically, without interroga-
tion

• dependent : position data comes from on-board global positioning
system (GPS) signal or flight management system (FMS)

• broadcast : data transmitted to any listeners (including air traffic
control ground stations, satellites, other aircraft)
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For safe flight operations, aircraft position is currently determined
using ground-based radar systems, primary surveillance radar (PSR)
and secondary surveillance radar (SSR). With the introduction of
Mode-S protocol (ICAO, 2015), controllers’ situational awareness was
further improved by assigning a fixed 24-bit address per flight and
allowing only the directly addressed transponders to reply. The Mode-S
transponders transmit aircraft position and status (e.g., speed over
ground, rate of climb/descent, heading) on the 1090-MHz SSR Mode-S
downlink frequency (ADS-B Out), and signals can be received up to a
distance of 400 km. Since visibility is more limited near the ground
and on the airport apron, receiver positioning is more important here.
Aircraft determine their position via satellite, inertial, and radio navi-
gation and transmit it at regular intervals (about one scan per second)
along with other relevant parameters to ground stations and other
equipped aircraft. According to the EU implementing regulation (EU,
2011, 2017), all flights must be equipped with Mode S transponders if
they are operated under instrument flight rules (IFR) and the aircraft
is flying faster than 250 knots and with more than 5700 kg. Similar
regulations increasingly apply to other countries (cf. FAA (2015)).

In this context, ADS-B is a special format within the Mode-S pro-
tocol, and the signal can be received with simple 1090 MHz receivers
(i.e., USB dongle and antenna < 100 e). This technology also offers a
olution for monitoring remote areas and flights over the oceans with
pace-based ADS-B (Delovski et al., 2014). However, ADBS transmitters
ould be installed not only in aircraft but also in ground vehicles or
quipment (SESAR Deployment Manager, 2018). This would enable a
ompletely new, perhaps even increasingly automated, traffic manage-
ent at airports. The extent to which PSR and SSR systems can be

upplemented or even replaced by simpler receiving systems in the
uture remains to be seen. However, it is already possible for airport
perators to process aircraft data and incorporate it directly into their
ntegrated management as a basis for collaborative decision-making.
he ability to easily receive ADS-B messages has already contributed
ignificantly to the development of online services that, for example,
isplay air traffic in real-time with data from globally distributed
eceiver networks, such as OpenSky Network (opensky-network.org),
lightradar24 (flightradar24.com), or FlightAware (flightaware.com).
n particular, OpenSky Network consistently pursues the idea of open
ata and makes obtained datasets available to the scientific community.

The quality of the received data is subject to certain technical
imitations, e.g. data reception on the ground is only possible if there
s a line of sight between the antenna and the aircraft. Aircraft can also
etermine their position in different ways. If the number of satellites
s not sufficient for a GPS-based determination, the aircraft position is
alculated using the built-in inertial systems. However, the occurring
ntegration drift of the sensors can lead to the fact that the recorded
rajectories do not match the traffic infrastructure on the apron as
ong as the GPS signal is not acquired correctly. A similar problem
xists in determining altitude, which can be provided as barometric
ltitude (standard atmosphere) or as satellite-based information. The
ncertainties in the data that this inevitably creates are not provided
n the decoded form in the OpenSky Network database (Schäfer et al.,
014), for example. However, these could be derived from the raw
essages (Sun et al., 2019) if needed and taken into account during
ata processing. Since we want to focus on the A-CDM-lite milestone
oncept in this work, we do not perform uncertainty analysis but filter
ut irrelevant data manually during preprocessing.

. Tailored approach: A-CDM -lite

We have derived a milestone approach using A-CDM-lite that con-
iders the following four objectives. (1) The number of milestones
ust be reduced to a quantity that can be derived from publicly

vailable aircraft movement observations (ADS-B). (2) Missing data
ust be appropriately supplemented or replaced with substitute data.

3) Our approach must achieve the same level of accuracy compared
4

to the actual data acquired at the airport. (4) Our approach should
be designed to analyze and predict both individual flights and overall
airport performance.

If ADS-B messages are taken as the primary input for integrated,
data-driven airport management, only aircraft movements (airside op-
erations) could be analyzed. However, the essential TOBT milestone
is mainly determined by aircraft ground operations (turnaround) and
related landside operations (e.g. baggage or passenger handling). For
example, passenger boarding is a process on the critical path with
a significant impact on the operational performance (Schultz, 2018;
Schultz and Reitmann, 2019). Also, we cannot determine the TSAT
timestamp directly from the flight movement data, so we have to use
an alternative timestamp. The data analysis shows that ADS-B messages
are sent by aircraft even before the push-back. We, therefore, assume
that the activation of the ADS-B transponder by the pilots is a signal
that the aircraft is ready. With this in mind, we consider the time of
receipt of the first ADS-B message during departure to be the Aircraft
Ready Time (ARDT). In the absence of a better estimator for TSAT
at this time, ARDT should be used as a substitute. The A-CDM-lite
milestones are based on data extracted from ADS-B messages (Sun et al.,
2019). The following data are used for further analysis and processing.

• timestamps of received messages, set from the receiver (enables
multi-lateration);

• transponder code and aircraft identification (call sign);
• information about aircraft location: latitude and longitude (◦, 4

digits), calibrated altitude (ft, with steps of 25 ft);
• information about aircraft speed: ground speed (kts), track angle

(◦) and vertical speed (ft/min);
• specific position messages, e.g. ‘on-ground’ when the aircraft is

on the ground (signal is provided by a landing gear sensor)

Since the received data are not containing unique flight identifiers,
we assign these identifiers by a heuristic combination of transponder
code, call sign, and timestamps of data received. Later, we want to
use the identifiers assigned to the flight plan information to add the
corresponding scheduled times for arrival/departure and in/off block.
However, the flight schedule information is not transmitted via ADS-B
and would have to be provided from additional data sources.

As a region of interest, we consider London–Gatwick Airport (EGKK)
in our contribution. The airport was already used to determine the
weather impact on airport performance (Schultz et al., 2018) and for
weather-delay categorization with machine learning (Reitmann et al.,
2017). The airport has a dependent parallel runway system with a
distance of 200 m between and operates one of the busiest single
runway in the world. Since only 08R/26L possesses an instrument
landing system (ILS), 08L/26R is mainly used as a taxiway or as a
backup runway during maintenance (see Fig. 3).

Fig. 3. Apron and terminal layout of London–Gatwick Airport.
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Concerning the available data, an appropriate milestone approach
should take into account the quality of the input data and the frequency
with which this data is provided. Aircraft determine their position
and periodically emit it (roughly one sample per second) with other
relevant parameters to ground stations and other equipped aircraft.
The quality significantly depends on the availability of active receiving
antennas in line of sight and on a proper caught GPS signal. Fig. 4 de-
picts the interarrival time between two consecutive received messages
containing a specific, aircraft-based update: 20% of the updates are
received within 5 s, 66% within 10 s, and 92% within 20 s, respectively.
A comparison of ADS-B messages with radar data showed that in 50%
of the cases the positions were updated within 1.5 s (80% within
10 s) (Verbraak et al., 2017).

Fig. 4. Distribution of time intervals between two consecutive updates of aircraft
position obtained from ADS-B messages.

The aircraft position is given in degrees and has an accuracy of four
decimal places. At the location of EGKK, with a latitude of 51.1481◦

and longitude of −0.1903◦, one latitudinal step (0.0001◦) has a distance
of approx. 11 m and one longitudinal step have a distance of approx.
7 m. These values are smaller than the average position error of
about 21 m obtained during radar verification (Verbraak et al., 2017).
The higher resolution in longitudinal direction could have an impact
on subsequent analyses (such as clustering), but will not be further
addressed in this contribution.

In the context of the A-CDM-lite concept, the resolution of the
altitude with 25 ft is not expected to be a major quality issue during
the calculation of the milestone. The final approach follows a constant
vertical guidance path provided by the glideslope transmitter (between
2.5◦ and 3.5◦, recommended 3◦ (Corrigan et al., 2015)). Thus, several
position updates along the glide path will provide additional data for
correction (position interpolation). If the aircraft is landed, the altitude
will be set to 0 m in the received ADS-B dataset, regardless of the
actual elevation above sea level. In the demonstration case of EGKK,
the elevation is 62 m.

4.1. A-CDM-lite milestones

With A-CDM-lite, as in Eurocontrol’s A-CDM concept, a time-based
trajectory is described by the following 8 operationally relevant time
stamps. While each milestone is directly processed using the ADS-B
messages, the first and last contact only depends on the focus set for
the observation area, such as the arrival sequence and metering area
(ASMA) with a radius of 40NM around the airport (cf. Cappelleras
(2015)).

(1) first contact with the local radar
(2) starting the final approach
(3) aircraft landing
(4) in-block
(5) aircraft ready (introduced as proxy for the target start-up ap-

proval time)
(6) off-block
(7) aircraft take-off
(8) last contact with the local radar
5

The in-block timestamp is defined when the aircraft reaches its
final position (gate or apron) and ends the data transmission. Due to
the proximity of buildings and other obstacles, the accuracy of the
transmitted positions decreases. We assume that the aircraft is in-block
when the position is within 40 m of the (average) last transmitted
position (Schultz et al., 2019a). The off-block milestone is determined
in the same manner if the distance from the first transmitted position
at the apron or gate is getting greater than 40 m. At this stage, we
are also aware that speed information, additional infrastructure data
from open data sources (e.g., OpenStreetMap), or clustering of aircraft
positions can lead to a more advanced determination of aircraft parking
positions (see Fig. 5).

Fig. 5. Density-based clustering of transmitted aircraft positions to derive airport infras-
tructure, such as parking positions or operational network (e.g. taxi way connections)
validated against information from OpenStreetMap.

The timestamp for the aircraft ready status is set, when the aircraft
starts transmitting ADS-B messages on the ground. The landing and
take-off times are defined as the change of the ‘on-ground’ indicator.
If necessary, this definition could be extended by airport information
(e.g., elevation), specific descent/climb rates, or speed restrictions.

The last milestone, which has not yet been sufficiently defined, re-
lates to the start of the final approach. The procedures for air navigation
services state that the final approach fix should be within a range of
18.5 km (10 NM) to the threshold and the final approach segment
should have a recommended length of 9.3 km (5 NM) (ICAO, 2014).
Furthermore, ICAO (ICAO, 2014) refers to five different aircraft cate-
gories, where the indicated airspeed at the final approach range from
130–180 km/h (category A) to 285–425 km/h (category E). Airline jets
can generally be assigned to category C and therefore have a speed
range of 215–295 km/h. According to the A-CDM implementation
manual (Eurocontrol Airport CDM Team, 2017), the milestone for the
final approach should be set at a point, when the aircraft is usually
between 2 and 5 minutes away from landing. Assuming the range of
approach speeds of airline jets and the time left to land, a distance to
the runway threshold between 7.2 km (2 min, 215 km/h) and 24.6 km
(5 min, 295 km/h) could be chosen as a position for this milestone.
Considering average values for both approach speed (255 km/h) and
time to land (3.5 min) the distance is 14.9 km (8 NM). Using the
recommended glide slope angle of 3◦ and airport elevation of 0 m, the
milestone for the final approach will be defined by the (interpolated)
timestamp when the aircraft passes the altitude of 2500 ft. According
to local airport conditions (such as elevation or arrival procedures),
the position of this milestone could be changed appropriately. Table 2
exhibits the derived milestones from the ADS-B data.

In Fig. 6 two connected flights are exemplary used to show the
derived operational milestones according to Table 2. Both flights are
operated by one aircraft and are connected via the aircraft tail number,
which could be further used to determine the duration of aircraft
turnaround.

5. Methodology

To demonstrate our approach, ADS-B data are available around
London–Gatwick Airport from October 1, 2018 to September 6, 2019.
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Table 2
Milestones for the A-CDM-lite concepts considering the Eurocontrol A-CDM approach
(milestone number and abbreviation).

A-CDM Description ADS-B data used

Milestones

4 Local radar update inbound First signal
5 Final approach Altitude < 2500 ft
6 ALDT Actual landing time ‘on-ground’ set
7 AIBT Actual in-block time Distance from final

position < 40 m

12 ARDT Actual aircraft ready time First signal on ground
15 AOBT Actual off-block time Distance from start

position > 40 m
16 ATOT Actual take-off time ‘on-ground’ unset
x Local radar update outbound Last signal

Fig. 6. A-CDM-lite milestones using lateral (top) and vertical profile (below) of a
sample aircraft operation (inbound and outbound flight) at London–Gatwick Airport
with: actual landing time (ALDT), actual in/off-block time (AIBT, AOBT), aircraft ready
time (ARDT), actual take off time (ATOT).

In the following, we show how the data is preprocessed (Section 5.1),
demonstrate how aircraft positions can be used to derive information
about airport infrastructure and apron operations (Section 5.2), and
provide results of an initial exploratory data analysis with a focus on
aircraft taxi (Section 5.3).

5.1. Data preprocessing

As mentioned in Section 3.3 on ADS-B data, the dataset contains
inherent uncertainties and may have gaps in the recorded data. There-
fore, the trajectories composed of the data points must be preprocessed
to meet two essential criteria: quality/quantity (sufficient number of
recorded positions with a small number of outliers) and accuracy (the
trajectories must be located at the taxiways). We identified three major
6

Fig. 7. Invalid aircraft ground trajectories detected in the dataset of London–Gatwick
Airport.

artifacts, caused by (a) GPS signal not present, (b) small sample size,
and (c) data recording contains data outside the target range.

(a) The trajectories show a clear offset to the taxi system of the
airport. This is the case, for example, if the position was calcu-
lated only by the aircraft inertial systems before a GPS signal
could be received for correction (Fig. 7a). These trajectories were
discarded.

(b) The ground trajectories do not consist of a sufficient number and
regularly recorded positions and thus cannot correctly represent
the aircraft movement profile (Fig. 7b). These trajectories are
discarded.

(c) The positions are already recorded since reaching the inbound
parking position, so that not only the outbound trajectory, start-
ing with aircraft ready milestone (or pushback) is available.
Fig. 7c exhibits a gate change from the inbound to the out-
bound position. We reduced the corresponding trajectories to
their outbound gate-to-runway section.

We use the Python library traffic (Olive, 2019) to preprocess the
data. This library, with its declarative grammar, provides a lightweight
definition of the steps necessary to ensure that only valid trajectories
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are provided for the next step of the exploratory analysis. This intuitive
grammar is exemplified in the following Python sequence, which was
used to filter out all taxi movements of landing aircraft.

5.2. Aircraft operations on airport infrastructure

By observing movements, insights into immanent interactions have
already been gained in many research areas. Thus, it is also a first,
intuitive approach to look for these interactions also in the operational
ground flows at the airport. The main point here is to investigate which
infrastructures are used and how frequently, without considering de-
tailed operational concepts. In our case, it is advantageous that aircraft
movements take place on defined taxiways, and when a large number of
movements are observed, the layout of the airport becomes apparent.
At the same time, the identification of areas of operational interests
should provide additional situational awareness. Typically, frequently
used intersections in the taxiway system are important interaction
points where the corresponding ground traffic needs to be efficiently
managed by the ramp controllers. A first idea is to consider the taxiway
system at the airport as a system of nodes and edges (resulting from
aircraft ground movements). Here we propose the use of the Ramer–
Douglas–Peucker (RDP) algorithm (Ramer, 1972; Douglas and Peucker,
1973), which is used for iterative simplification and smoothing of line
segments (curves), considering a maximum distance threshold. From
our point of view, this algorithm also works as a detector for nodes,
allowing the recorded trajectories to be divided into edge segments.

The dataset contains position updates, which could be interpolated
between preceding and succeeding positions (e.g. location and speed),
these updates will not provide additional information and could be
deleted. For a specific application, a trajectory may be resampled with
the required sample rate. The number of positions will be significantly
reduced by applying the RDP algorithm, using aircraft location (latitude
and longitude). To ensure that no operational milestones are deleted
by applying the RDP, trajectories are divided into segments (each
beginning and ending with a milestone), and the RDP is then applied
to those segments. As Fig. 8 exhibits, setting the distance thresholds
for the trajectory simplification to 100 m and 50 m reduces the initial
number of intermediate positions between the operational milestones
from 64 to 2 and 5, respectively.

However, the use of these two distance thresholds for the RDP
algorithm also demonstrates that the taxiways used are not adequately
covered. A distance value of 25 m was finally implemented (cf. Ver-
braak et al. (2017), Schultz et al. (2019a)), which leads to suffi-
cient coverage with 9 remaining intermediate positions for the aircraft
ground trajectory between the operational milestones. Together with
the 3 outbound operational milestones (ARDT, AOBT, and ATOT), the
trajectory is now described by 12 data points, which indicates a data
reduction of 82% compared to the original 67 data points.

All remaining positions of the simplified trajectories are clustered
using kernel density estimation and hill-climbing strategy (Hinneburg
7

Fig. 8. Compression of exemplary ground trajectory of departing aircraft: (top)
operational milestones and distance of 25 m, (below) compression with 100 m and
50 m distance.

and Gabriel, 2007). Areas of operational interests (Fig. 9) can now be
derived from the clustered positions in a time-based manner and enrich
the representation of the airport infrastructure already created (see
Fig. 5). This graphical representation only shows the utilized section of
the airport apron and, depending on the time period and the number of
movements, is only partially representative of the entire airport system.
Nevertheless, the frequently used intersections can be considered as
additional input for ground safety and traffic management (Ali et al.,
2020).

Fig. 9. Areas of operational interests at the apron and taxi system of London–Gatwick
Airport. The size of the circles corresponds to the number of aircraft movements per
time counted at that location.

Finally, a directed graph could be derived from the (static) airport
infrastructure, the observed movements, and the areas of operational
interests. This graph could be used for the dynamic prediction of taxi
time duration for inbound and outbound flights. Since our approach
does not include any additional airport information but relies only on
information from ADS-B messages, it can be used with no limitation to
any other airport in the air traffic network. Fig. 10 shows for example
the detected areas of operational interests at Tokyo Haneda Airport.

This is a scalable approach that enables stakeholders to obtain
operational information about their own and connected airports. Thus,
in an airport network, hubs could run their analysis of the connected
airports to anticipate observed deviations from planned operations and
evaluate the expected impact on local airport performance.

5.3. Exploratory data analysis: Taxi operations

A more detailed, exploratory data analysis of taxi operations could
provide additional insight into the procedure design and efficiency of
ground traffic management at London–Gatwick Airport. In the previous
analysis, we used only position data, but this does not appropriately
describe aircraft ground trajectories. As traffic on the apron increases,
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Fig. 10. Areas of operational interests at Tokyo Haneda Airport.

so does the probability of interactions between aircraft, which generally
results in aircraft having to wait at holding positions. The speed data
can be used to determine at which apron locations aircraft have to wait
and for how long. In Fig. 11 we have used the arriving traffic as an
example to highlight all aircraft positions on the apron (no parking
positions) for which zero ground speed was reported.

Fig. 11. Density map of positions of aircraft with zero ground speed.

This density map allows distinguishing between two types of focal
points: those on the taxi system and the apron. In the taxi system,
as expected, the points are mostly located directly in front of the
intersections, but also at a greater distance in front of them. At these
particular intersections, high traffic demand leads to queues. The other
type of focal point is mainly located near the parking positions (at the
gate or on the apron). Here, pilots regularly wait for clearance to roll
into parking positions or for clearance to leave positions after pushback
toward the runway.

By using both locations and velocities we could derive additional
information about the apron operations. In the next step, we will cluster
the ground trajectories accordingly. The goal of clustering is to group
similar trajectories, potentially providing further insight into the com-
mon structure of the trajectory clusters. However, the available data
are not labeled (an unsupervised learning approach is required) and
structure search requires determining the similarity of the trajectories
using an appropriate objective function (e.g., close Euclidean distance).
When clustering aircraft trajectories, it is a challenging task to find a
suitable distance function, since not only location and time information,
but also a multitude of other dimensions, e.g., aircraft speed, aircraft
type, or environmental status data (e.g., apron utilization, weather) can
be incorporated. To enable clustering even for high-dimensional spaces,
8

the input data is usually projected into a low-dimensional space. The
following approaches are commonly used for projection in the context
of trajectories: Principal Component Analysis (PCA), Autoencoder, t-
distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten
and Hinton, 2008), or Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018).

Fig. 12 shows six example clusters resulting from the application of
the DBSCAN (Ester et al., 1996) algorithm to a two-dimensional space.
For this purpose, ground trajectories were previously reduced to 50
data points each, with each data point containing position data (longi-
tude and latitude) and ground speed. For the projection of the resulting
150 dimensions per trajectory onto the two-dimensional space, t-SNE
was used.

Fig. 12. Cluster subset based on three features (latitude, longitude and ground speed)
and 50 samples per trajectory. The top right (pink) and bottom left (red) correspond to
similar spatial flows but different ground speed profiles (see Fig. 13). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

The exemplary landings in a westerly direction (26) for the first five
clusters and in an easterly direction (08) for the last cluster (Fig. 12
bottom right, bold orange) already show typical aircraft taxi patterns.
These mainly depend on the used runway exit and the assigned parking
position, which can be derived very well from the given input features
(location and ground speed). However, the plots in Fig. 12 focus only
on the spatial characteristics of the aircraft ground trajectories. For
example, the upper right (pink) and lower left (red) clusters appear to
have a similar structure, but they differ significantly when comparing
the velocity profiles of their respective representative trajectories.

As Fig. 13 shows, clustering with ground speed as an additional
feature leads to different clusters for trajectories with waiting times
at stops and without waiting times. In summary, this example demon-
strates very well how a stepwise exploratory data analysis provides
growing insights into airport operations and performance.

6. Analysis of operational milestones

To demonstrate that the A-CDM-lite milestones provide an appro-
priate analysis of the airport environment, we have initially used
the 10 busiest operating days: 8827 flights with 831,597 position
updates (simplified to 139,740 updates). This dataset is used to analyze
the three following aspects: duration of the landing approach (time
between the milestones ‘starting final approach’ and ‘landing’) (Sec-
tion 6.1), the time between ‘aircraft ready’ and ‘off-block’ (Section 6.2),
and the time for inbound and outbound taxi operations (Section 6.3).

6.1. Duration of final approach phase

About the expected final approach speed (feature aircraft type, cf.
section 4.1), the duration of the final approach phase is an indicator
for current the headwind/ tailwind component and thus also for the
maximum arrival flow that can be achieved. This in turn has significant
implications for airport capacity management. The distribution of the
final approach phase duration is shown in Fig. 14. It can be seen that
the final approach takes less than 250 s for 55% of flights and 90% of
flights land 310 s after passing the defined final approach milestone.
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Fig. 13. Reference trajectories fall in different clusters because of their ground speed
profiles. The upper trajectory shows waiting times at intersections to enable prioritized
traffic to pass first.

Fig. 14. Distribution of final approach duration, starting at an altitude of 2500 ft until
landing.

Fig. 15. Distribution of duration between ARDT and AOBT.

6.2. Duration between ARDT and AOBT

Leaving the parking position is defined by the AOBT milestone.
By determining the time difference between AOBT and ARDT, the
prediction of the variable taxi time can be improved in the future. In
addition, the data from the A-CDM system can be used to test how
effective the ARDT determined with A-CDM-lite is as a substitute for
the TSAT (or TOBT). In Fig. 15, the distribution of the time difference
is shown. After 2 min, 67% of all flights have already reached the AOBT
milestone, 90% of flights have a duration of less than 5 min. We also
expect this temporal order of magnitude when using the TSAT as a
reference measurement, so that we can for the time being assume to
have found a suitable substitute parameter with the ARDT.
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6.3. Taxi times

The taxi time, and even more so the additional taxi time caused
by increased traffic volume, is an important factor in describing the
performance of an airport. The design and most efficient use of the
taxi/apron system have a critical impact on ensuring that the given
capacity is fully used and that aircraft can reach the runways or
assigned parking positions with minimal time delay.

London–Gatwick Airport has one of the busiest runways, but this
is associated with long waiting times for takeoff. To determine the
effective taxi time (without runway movements), we also determined
the time when aircraft leave/enter the runway. Thus, the taxi time is
the difference from the AIBT/AOBT and also includes time spent at
the queues before entering the runway for take-off. A closer look at
Fig. 8 shows that the points for leave/enter the runway can already
be easily determined by simplifying the trajectories. The relationship
between the number of aircraft movements (arrival, departure, sum of
movements) and the taxi times is shown in Fig. 16.

Fig. 16. Characteristics of aircraft movements (top) and corresponding taxi times
(below).

The taxiways depicted in Fig. 12 already indicate that the length of
incoming taxi routes also varies depending on the operating direction
of the runway. This is also true for outbound traffic. For example, taxi
times for eastbound departures (08) are on average 2–3 min longer
than for westbound departures (26). Fig. 17 shows the corresponding
taxi time distributions. For westbound departures, taxi time is less than
19 min for 50% of flights (for 90% of flights less than 29 min), while
for eastbound departures it is less than 22 min (31 min).

Fig. 17. Probability density of taxi outbound times during easterly (08) and westerly
(25) operations.

The relationship between taxi times and the number of aircraft
movements (traffic demand) already indicated in Fig. 16 is examined
in more detail below. In general, it can be assumed that with increasing
traffic demand on the apron, aircraft interactions will also increase and
that the coordination effort required for this will lead to longer taxi
times (and local congestion). Fig. 18 (above) shows the variation in
taxi times for inbound and outbound traffic as traffic demand increases.
Assuming a linear relationship, each additional movement on the apron
leads to an increase in taxi time for outbound traffic of almost 0.5 min,
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Fig. 18. Impact of all aircraft movements (top) and particular arrival movements
(below) on the inbound and outbound taxi times.

with a minimum taxi time of about 4 min. In contrast, the analysis
of inbound taxi time shows almost no dependence on the number of
aircraft movements. Performing the same analysis, but this time only
determining the dependence of taxi times on arrival movements, the
outbound taxi times show a logarithmic progression (see Fig. 18 (be-
low)). The inbound taxi times confirm the previously observed nearly
independent behavior to increasing traffic demand.

7. Discussion and outlook

Small and medium-sized airports are not yet sufficiently covered
with ADS-B receivers today. Against this background, we had to choose
another airport for our data-driven concept. We decided on London–
Gatwick Airport: only one runway in operation, less complex apron
layout, very good data reception on the entire apron, and, due to
its status as an A-CDM airport, can also be used for later concept
validations. The analysis of ADS-B messages in the context of a data-
driven and performance-oriented airport management has shown that
essential operational milestones along the aircraft trajectories can be
derived if the airport is well covered by appropriate receivers. With a
step-by-step exploratory data analysis, we were able to gain insights
into the apron infrastructure used and aircraft taxi operations. Fur-
thermore, with in-depth performance analysis, we were able to show
the correlations between traffic flow and taxi times that are expected
for London–Gatwick Airport. For all of these analyses, we did not
use airport-specific operational data, but only the freely receivable
data broadcast by aircraft. We have not identified any issues with
our tailored approach that would have required the use of third-party
resources and hope that our contribution will motivate small and
medium-sized airports to implement A-CDM-lite.

It was already apparent during the development of our initial con-
cept ideas that the introduction of ADS-B in the field of civil aviation
will be mandatory. Even if implementation delays are taken into ac-
count, it is possible soon to have access to received ADS-B messages
worldwide, to make it available as open data, and to use it as a basis for
data-driven airport operations (e.g., monitoring and predictions). From
an economic point of view, there are no disadvantages to installing a
local receiver network and sharing the recorded data. The information
from connected airports can thus also be incorporated into the local
decision-making process on time. We assume that the installation of
a local receiver network will cost less than 1000 e (most basic re-
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ceivers cost less than 20 e). In this context, security-related intrusions,
e.g. spoofing attacks, could also be detected and stopped by appropriate
countermeasures (e.g. multilateration).

The use of our data-driven approach seems to be particularly bene-
ficial for small and medium-sized airports. However, it should be noted
that Open Data capabilities allow local decisions to be made at airports
without the involvement of the network operator, which currently has
a data monopoly. Also referring to the Braess paradox (Braess, 1968),
the new amount of information and the associated local (self-interested)
decisions can lead to situations in the aviation network that are not
beneficial for many (all) stakeholders.

To validate the A-CDM-lite concept and to use it as a basis for
the prediction of operational processes (states), we will examine in
future work to what extent flight plan and operational history data are
required for this purpose. These data could be integrated, for example,
via Eurocontrol’s B2B services. Our concept will also be gradually
expanded by including other data sources to take into account signif-
icant causes of interference (e.g., weather, cf. Fig. 19) and to predict
operational behavior at the airport (cf. Schultz et al. (2018), Reitmann
and Schultz (2018), Reitmann et al. (2017)).

Fig. 19. Classified weather data per day as input to assess the severity of weather
impacts on local airport operations, as a basis for performance-based airport
management.
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