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1. MODEL PROBLEMS

Precipitates, i.e. domains of a new phase within another
phase, arise in many applications in science and engi-
neering. Usually in precipitation, the domains of the new
phase are small and disconnected, but many bubbles (gas),
droplets (liquid), or inclusions (solid) are encountered
within the surrounding connected phase. In this paper we
focus on the time evolution of precipitates, in particular
stationary solutions and their stability.
As first example we consider hydrogen nanobubbles that
are produced within polymer electrolyte membrane (PEM)
electrolysers. The goal of this process is to split water by
electric energy, e.g. provided by photovoltaic devices, into
hydrogen and oxygen:

2 H2O −⇀↽− O2 + 4 H+ + 4 e− −⇀↽− O2 + 2 H2. (1)

As a side effect, this could allow for storing fluctuant
renewable energies in the form of hydrogen, avoiding un-
necessary energy losses. The hydrogen may be used for
proton exchange membrane fuel cells (PEMFC), convert-
ing hydrogen and oxygen (e.g. from air) into electrical
energy and, as byproduct, water. It is a tempting idea
to employ for the hydrogen electrolysis again the hydrogen
PEMFC. Hydrogen could be liquified under high pressures
and may serve as an energy carrier, but the cost of hydro-
gen production needs to be reduced for this technology
being cost-effective. Today, the most widespread method
for producing hydrogen is steam reforming from methane,
electrolysis might be a green alternative.
Within electrolysis, the typically high concentrations of
hydrogen lead inevitably to precipitation of gaseous bub-
bles. Small nanobubbles appear at the surface of the
cathode (negative within electrolytic mode of operation),
then detach and become suspended spherical nanobubbles
within water (Seddon et al. (2012)). As an unwanted effect

the generation of surface nanobubbles covers increasingly
the platinum (Pt) part of the electrode and might hinder
hydrogen production there. For electrolysis, the goal is to
achieve a stable hydrogen flux away from the cathode,
i.e. a regime of stable surface and bulk nanobubbles. To the
knowledge of the author, there is no good understanding
of the long-life properties of nanobubbles (Zhang et al.
(2008); Luo et al. (2013)). According to classical theory
it is expected that nanobubbles dissolve within microsec-
onds, however life-times of 10−2 − 10−1s are observed in
experiments. Our model suggests an explanation for this
phenomenon.
Another example is the precipitation of arsenic (As) rich
liquid droplets within a gallium arsenide (GaAs) crystal.
At the end of the production process of semi-insulating
GaAs wavers, a final heat treatment is applied in order to
ameliorate certain properties of the semi-insulator. How-
ever, liquid droplets may nucleate and shrink or grow
further. The droplets may be assumed to be spherical, their
chemical potential is largely influenced by surface tension,
but mechanical bulk stresses within the crystal have to
be taken into account, too (Dreyer et al. (2008)). The
goal is to limit the growth and to obtain a homogeneous
distribution in order not to destroy the semi-insulating
properties of the crystal (Kimmerle (2013)).

2. MATHEMATICAL METHODS

Precipitation processes can be modelled mathematically as
free boundary problems. Free boundary problems are de-
scribed by different approaches. The phases may be mod-
elled on an atomic level, where one considers the balance of
atom/molecule numbers, or on a continuum level. Within
continuous models one can model the phase interface as
a mushy region, as it is done in phase field models (also
called diffuse-interface models), or by sharp interface mod-



els, as e.g. the Mullins Sekerka model. The different models
correspond to different mathematical methods: Phase-field
models may be solved be level set methods, sharp-interface
models could be treated by transformation techniques. For
free contact boundaries, variational inequalities or comple-
mentarity conditions, are another option. In many situa-
tions, the motion of the sharp interface is either dominated
by volume diffusion or by interface reactions, yielding
different free boundary conditions (Stefan conditions) for
each regime. In general, we are not primarily interested
in solving for the precise evolution of every precipitate,
but in macroscopic quantities, like the volume fraction of
precipitates or the long-time behaviour. For this purpose,
continuum as well as atomic models may be considered
through the glasses of a homogenization method. A classi-
cal macroscopic model is the LSW model, due to Lifshitz-
Slyozov and Wagner, that is derived e.g. within the limit
of vanishing precipitate fraction from the Mullins-Sekerka
model, see e.g. Niethammer et al. (2001).
In this paper we work with a sharp-interface model, where
the evolution of the interface is given by a further differen-
tial equation for the free boundary. We only consider the
volume-diffusion controlled (DC) regime.

3. NANOBUBBLES IN HYDROGEN ELECTROLYSIS

3.1 Modelling precipitation

In our model we assume a constant temperature and con-
stant outer pressure. Hydrogen surface nanobubbles can
be described as spherical caps sitting at the solid/liquid
interface, for typical dimensions see table 1. In addition,
micropancakes with a height of 1−2 nm and radii of 100−
900 nm are observed at the solid/liquid interface (Sed-
don et al. (2012)). Furthermore, we encounter suspended
spherical nanobubbles in the liquid. We emphasize that we
say spherical bubble or (nano)sphere and surface bubble
or (nano)cap, whereas bubble or precipitate comprises all
three types. As a first validation approach we will only
consider nanospheres and nanocaps in this study.
For the geometry, we consider a box domainQ := [−`, `]2×
[0, 2`] ⊂ R3 with the electrode as one (flat) boundary Σ :=
{x ∈ Q |x3 = 0}, the top boundary Z := {x ∈ Q |x3 =
2`}, and the remaining side boundaries Π. Q has several,
let’s say N ∈ N∗, gaseous inclusions (bubbles) G(i), being
several nanocaps C(i) and several spherical nanobubbles
S(i). In the following the upper indices (i) refer to the
corresponding sphere or cap, i running from 1, . . .N . The
gas phase (hydrogen) is represented by G = ∪Ni=1G

(i) and
the liquid phase (protonated water) by L = Q \ G, G
denoting here the closure of G. I(i) = ∂G(i) ∩ ∂L denotes
the gas-liquid phase interfaces.
The assumptions of spherical bubbles and spherical caps
are consistent with a hydrogen concentration cl/cg, in
liquid/gas respectively, both constant on the respective
side of an interface. In the DC regime the motion of
each interface is driven by the jump of diffusion flux j
at the interface, see (7) below. The Ns nanospheres are
parametrized by their radiiR(i). We characterize the Nc =
N −Ns spherical caps by their curvature radius R(i), see
Fig. 1. W.l.o.g. we may order the bubbles by type, starting
with nanospheres, i = 1, . . . ,Ns and then we list the radii
of the nanocaps with indices i = Ns + 1, . . . ,N . Let Θ(i)

a(i)Y (i)

R(i)

Θ(i)

Θ(i)

X(i)

Liquid (L)

Σ Gas

Solid

Fig. 1. Cross section of a spherical surface nanocap
(shaded) on a flat surface.

denote the angle between flat surface and the tangential
plane to the spherical cap, see Fig. 1. The (half-)width of
the cap follows as a(i) = R(i) sin Θ(i). For an overview of
typical quantities and their values see table 1.
Spheres and caps may grow or shrink and, possibly, dis-
solve when for the first time R(i) ≤ 0 and then the
precipitate is taken out of the balance equations. Note that
we do not consider nucleation of new precipitates within
this model. Therefore the numbers N , Nc and Ns will
also depend on time. Let X(i) denote the centers of the
curvature spheres, that are fixed in case of nanospheres.
For caps the centers of the curvature sphere are a techni-
cal construction: They lie outside Q and may move, but
their orthogonal projection onto Σ, the center Y (i) of the
contact circle, remains fixed.
The interfaces may be parametrized by the radii, I(i) =
∂BR(i)(X(i)) ∩ Q. The initial geometry is prescribed by

R(i)(0) = R(i)
0 , Θ(i)(0) = Θ

(i)
0 , Ns(0) = N 0

s , Nc(0) =

N 0
c , and N (0) = N 0 with given R(i)

0 > 0,Θ
(i)
0 ∈

(0, π),N 0
s ,N 0

c ∈ N∗. We consider the precipitate evolution
for times t in a finite time interval [0, T ].
Let c denote the unknown (non-negative) concentration
of hydrogen, p the pressure, and D the given diffusion
coefficient. Quantities like c, p, or D are restricted to a
certain phase by subindices l for liquid or g for gas, since
the may jump at the phase interface. In the liquid and in
the gas phase Fick’s law holds,

j = −D∇c inQ \ ∪Ni=1I
(i), (2)

with the quasi-static diffusion equation ∇ · j = 0 we find

∇ · (D∇c) = 0 inQ \ ∪Ni=1I
(i), (3)

that simplifies to the Laplace equation, since we assume a
constant diffusion coefficient D in each phase, respectively.
This yields directly with the assumption of spherical

Quantity Symbol Value Unit

Length electrode segment ` 1 µm

Typical radii (spheres) R(i) 100− 1000 nm

Typical widths (caps) a(i) 50− 100 nm
Typical temperature T 298 K

Diff. coefficient (liquid) Dl 7.0 · 10−10 m2/s
Henry constant H 1.91 · 10−2 1

Surface tension H2O/H2 γ 0.07 N/m
Equilibr. saturation conc. H ĉeq

l
0.8 mol/m3

Table 1. Experimental data (Luo et al. (2013))



droplets, that c
(i)
g is constant in space within each bubble.

Let R denote the gas constant and T the temperature.
According to the ideal gas law, we have for the gas pressure

p
(i)
g , consisting of hydrogen only, the constant value p

(i)
g =

RTn
(i)
g /V (i) = RTc

(i)
g , n

(i)
g denoting the number density of

hydrogen molecules in the bubble i with volume V (i). Then
the Young-Laplace law yields for the pressure difference

between the liquid pressure p
(i)
l at the inferface I(i) and

the pressure p
(i)
g in bubble i

RTc(i)g = p(i)
g = p

(i)
l + 2γ/R(i), (4)

where γ is the surface tension, assumed to be constant.

We write c
(i)
l = cl|I(i) . Note that according to a model for

charged fluid flow in PEM (Novruzi et al. (2014)) in case
of small fluid flows, we have the following law (formally

similar to the ideal gas law) in the liquid p
(i)
l = RTc

(i)
l +

pH2O, where the partial pressure pH2O of water turns out
to be neglible.
In principle, Θ(i) has to be determined. Classically, one
determines the contact angle via the Young-Dupré equa-
tion, a relation of the surface tensions/energies, γsl−γsg−
γ cos Θ(i) = 0, where γsl and γsg are the interfacial energies
between solid/liquid and solid/gas, resp. Unfortunately,
measurements of the latter are not available in literature
for our situation, as far as to the knowledge of the au-
thor. We assume Θ(i) = 5◦ = const, corresponding to
radii of curvature for caps between 100 − 1000 nm. In
general, γsl, γsg, and thus Θ(i) might depend on R(i).
The volume of a sphere is well-known, for the surface cap
we have (4π/3)(R(i))3ω, where we abbreviate ω := (1 −
cos Θ(i))2(2 + cos Θ(i))/4.

We have to determine the hydrogen concentration c
(i)
l in

the solute at the interface I(i). The Henry law relates
the partial pressure pH2

of hydrogen to the equilibrium
concentration ĉl of the solute by pH2

= Hĉl/ĉg, where H
is the dimensionless version of the Henry constant, yielding
(by means of a Taylor expansion around the equilibrium)
the local flux between a bubble and the liquid (Sperre

(2014)), j|I(i) ≈ α(c
(i)
l −Hc

(i)
g )ν, α being a proportionality

constant, ν the outer normal. In case of zero net flux we
have

c
(i)
l = Hc(i)g . (5)

In Sperre (2014) a dynamic equilibrium for one bubble
is considered. A surface nanobubble can be in dynamical
equilibrium by steady in- and outflux over the bubble
interface, since the gas concentration is higher at a hy-
drophobic wall, yielding an influx into the bubble, than
at the top of the cap (just liquid), where the outflux
takes place. In this situation the Henry law only holds for
concentration averages over the interface. In contrary, we
will consider a quasi-static equilibrium that is obtained by
interaction of the hydrogen bubbles through a mean hy-
drogen concentration in the solute. Therefore we combine
the Henry law with (4) and get

c(i)g = σ/(HR(i)), c
(i)
l = σ/R(i), (6)

where we introduce σ = 2γH/(RT (1−H)) for brevity.
We emphasize that we assume that the bubbles consist
only of hydrogen. By conservation of substance we mo-
tivate the following free boundary condition, see Dreyer
et al. (2008); Kimmerle (2009),

∂

∂t
R(i) =

[j]lg · ν
X[c]lg

= −
∇(Dlc

(i)
l −Dgc

(i)
g ) · ν

X(c
(i)
l − c

(i)
g )

, (7)

where the jumps [·] are from liquid to gas. For simplicity,
we approximate here the function X by 1. This so-called
Stefan condition determines the radii evolution.
It remains to determine the boundary conditions (b.c.) for
cl. At the flat electrode surface outside the droplets we
have a given influx jin of hydrogen, that is produced at
the electrode

−Dl∇cl · ν = j · ν = jin · ν on Σ∗ := Σ \ ∪Ni=1∂C
(i), (8)

at the gas/solid interface we may assume due to catalyst
coverage

−∇cl · ν = 0 on Σ \ Σ∗. (9)

We may expect that jin is periodically at the electrode
surface, consisting alternatingly of platinum (catalyzes
hydrogen reduction reaction) and glass (no hydrogen pro-
duction), and being zero close to surface caps. We recall
that nucleation is not considered in the model, only at the
electrode boundary Σ∗, where no caps cover the surface,
a steady flux of hydrogen enters. Furthermore, we do not
model the detachment of surface nanobubbles that might
become spherical nanobubbles subsequently. By symme-
try, we assume no flux conditions on the side boundaries

−∇cl · ν = 0 on Π, (10)

and a constant hydrogen outflux on the top boundary

−Dl∇cl · ν = jout · ν onZ, (11)

in order to model a static flux of hydrogen ions (protons)
in direction of the anode of the fuel cell, passing through
the membrane on its further way.

3.2 Many bubbles problem and scaling

In principle we have to solve for cl the Laplace equation
following from (3)

∆cl = 0 inL (12)

combined with the b.c. (6)2 for each index i and (8)–

(11). In G, the concentrations c
(i)
g within each bubble are

constant and given by the respective formula (6)1. This
allows to simplify the radii evolutions (7), to

∂

∂t
R(i) = −Dl

∇c(i)l · ν
c
(i)
l − c

(i)
g

∀i = 1, . . . ,N . (13)

This is complemented by the above mentioned initial con-
ditions for N ,Ns, and R(i), i = 1, . . . ,N 0. Our many bub-
bles problem is a generalization of the classical Mullins-
Sekerka model by introducing nanocaps and a different
Stefan condition.
We assume that typical distances between bubbles are
larger than their radii and widths, such that within the
considered time interval the effect of intersecting bubbles
may be safely neglected. A typical radius R is of the order
of several nanometers, while the typical distance between
nanobubbles is about `, i.e. a micrometer. In order to
emphasize the different scales in the equations we intro-
duce a scaling factor ε̂ = 10−1. We extend Q formally by
adding periodically N 0−1 boxes, parallel to the electrode
surface plane. Radii and radii of curvature, relevant for
the single bubble solutions scale with R = ε̂`, ` ∼ ε, while
the number N 0 of nanobubbles scales with ε−2. Note that
bubble volumes scale therefore with ε̂3 = 10−3. In order



to balance (6) we scale γ ∼ R. Diffusion times scale as
(N 0)2. The capacity of all bubbles goes with ε̂ `N 0, we
set ε̂ = ε2 for a dilute regime. Within this scaling regime,
we see (Niethammer et al. (2001)) that the solution c in
the neighbourhood of a bubble is basically the solution for
this single bubble problem alone, approaching the “mean
field” concentration c for an infinite radius. It turns out
that this so-called mean field approach allows to solve
our many bubbles problem efficiently. The solution of the
full problem for cl would require the numerical solution
of a PDE with many free boundaries, requiring finite
element methods for a time-dependent domain, while in
our approach only one ODE for c has to be solved instead.
We use same notations in the scaled case from now on.

3.3 Single bubble problem

For a single nanosphere alone, we solve (12) on R3 \
BR(i)(X(i)) together with limr→∞ c = c, r = |x − X(i)|,
and (6)2 as b.c. Note that c depends on time only and
might be interpreted as a concentration far away from any
kind of bubbles. The problem is spherical symmetric and

the solution denoted by c̃
(i)
l is obtained by the well-known

fundamental solution for the Laplace operator,

c̃
(i)
l (r) = (c

(i)
l − c)ε̂R

(i)/r + c. (14)

For the Stefan condition (13), by means of

∂

∂r
c̃
(i)
l (ε̂R(i)) = −(c

(i)
l − c)/(ε̂R

(i)), (15)

we get for the scaled evolution of I(i)

∂

∂t
R(i) =

Dl

R(i)

c
(i)
l − c

c
(i)
l − c

(i)
g

. (16)

The radial symmetry applies to spherical nanocaps as well.
Solving (12) on {x ∈ R3 \ BR(i)(X(i)) |x3 > 0} similar as
for a single sphere yields (14), too. We have to guarantee
the b.c. on Σ∗

∇c̃(i)l |Σ∗(r) · ν !
= jin · ν. (17)

Due to radial symmetry the left hand-side is zero, thus
we may consider in this case only jin = 0. We recall
that close to surface caps, we have assumed jin = 0.
W.l.o.g. we may adapt for jin, that is not zero everywhere,

by adding a suitable global “background” term to c̃
(i)
l , but

this would give rise to technical issues with the assumption

that c
(i)
l is constant on I(i). Since this background term

does not dominate the radii evolution, we omit it here. We
encounter the same form of Stefan condition (16) as for a
single spherical nanobubble.

3.4 Mean field model

In order to solve the many bubbles problem, we construct
a formal macroscopic solution with čil = N 0c̃il − (N 0− 1)c

c∞(x) =
1

N 0

∑Ns

i=1
č
(i)
l (x) +

1

N 0

∑Ns+Nc

i=Ns+1
č
(i)
l (x). (18)

Clearly ∆c∞ = 0 in {x ∈ R3\G |x3 > 0}. If we let formally
ε → 0 for the moment and N/N 0 ≈ 1, this would yield
{x ∈ R3 |x3 > 0}

lim
ε→0

c∞ ≈ c(i)l if |x−X(i)| − ε̂R(i) → 0 for some i, (19)

lim
ε→0

c∞ ≈ c otherwise. (20)

Thus we may assume that the global solution c of the many
bubbles problem is well approximated by a superposition

of the single bubble problem solutions c̃
(i)
l . The free

boundary condition (16) for the radii of spheres and caps
does not depend on ε, and may be rewritten as

∂

∂t
R(i) = − Dl

R(i)

H

1−H

(
1−R(i) c

σ

)
. (21)

In order to determine the mean field concentration c we
consider the global hydrogen balance over a total time T .
For a quasi-static equilibrium, we assume a total zero net
flux and outflux into the considered domain Q, i.e.

Jtot :=

∫ T
0

(∫
Σ

jin dA+

∫
Z

jout dA

)
dt = 0 (22)

s.t. the initial amount C0 = ĉl|Q| of hydrogen in the box
Q is conserved:∫

L

c dV +

N∑
i=1

∫
G(i)

cig dV = C0 + Jtot = C0. (23)

Using that c depends on time only and (6)2, we get as first-
order expansion in ε (the zero-order yields only c = ĉl)(
|Q| − 4π

3

ε3

N 0

( Ns∑
i=1

(R(i))3 +
N∑

i=Ns+1

ω(R(i))3

))
c

+
4π

3

ε3σ

N 0H

( Ns∑
i=1

(R(i))2 +

N∑
i=Ns+1

ω (R(i))2

)
= C0. (24)

We end up with

c =
ĉl − 4π

3
ε3

N 0|Q|
σ
H

∑N
i=1 ω

χ(i)(R(i))2

1− 4π
3

ε3

N 0|Q|
∑N
i=1 ω

χ(i)(R(i))3
, (25)

where χ(i) = 1 if Ns + 1 ≤ i ≤ N and = 0 otherwise.
Due to the ansatz of a quasi-static in-/outflux there is no
effect due to the partial coverage of Pt at the electrode
by hydrogen surface caps. Since a concentration should
be non-negative, our model breaks down when c < 0
corresponding to too large bubbles that might intersect.
The latter being a contradiction to our scaling assumptions
in Subsect. 3.2. However, for consistent initial radii, we
may expect that for a sufficiently small time T > 0 the
constraint c ≥ 0 is guaranteed.
For a rigorous derivation of the macroscopic LSW equa-
tions from the classical Mullins-Sekerka model in the limit
ε→ 0 see Niethammer et al. (2001). We assume that there
exists only a finite initial number of different radii, that
recur periodically over the infinite number of boxes Q.
Inserting in the LSW equations as initial data a finite sum
of Dirac distributions corresponds to a finite number of
different radii initially, as in our situation. This motivates
our mean field model, for a positive but small ε.
We solve the ordinary differential equations (21), com-
pleted with initial conditions, and the algebraic equa-
tion (25) until for the first time τ (j) a bubble vanishes,
i.e. τ (j) := inft∈[0,T ]{R(j)(t) ≤ 0} for some j. Then

we take out bubble j by fixing R(j) = 0 for all times
t > τ (j) and restart solving our differential algebraic equa-
tion (DAE) system on [τ (j), T ] with new initial conditions
R(i)(τ (j)+) = R(j)(τ (i)−) for all i 6= j. We proceed until
the next bubble dissolves or until the maximal time T is
reached.
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3.5 Numerical simulations

The DAE system, described in the last subsection, has
index 1. We differentiate (25) w.r.t. time and solve by
Matlab using the solver ode113. This approach is applied,
since solving the DAE directly by means of suitable
Matlab solvers, like ode15s or ode23t, exhibits problems
at the points τ (j) in time, when droplets vanish. We
assume a supersaturation concentration ĉl = 5.0 mol/m3,
for the other underlying data see table 1. For ease of
presentation we represent the mean field concentration by
a corresponding radius value,

R := σ / c (26)

motivated by (6)2 and (21). We emphasize that c being a
concentration is non-negative.
For the radii evolution, where the mean field is represented
by an equivalent radius (26), see Fig. 2. We see that
with exception of the largest bubbles all precipitates
disappear, in particular all spheres dissolve. However, we
observe several meta-stable bubble radii, corresponding to
caps, for times of 10−3 − 10−1s. This corresponds to the
experimental observations described above and validates
our model. Furthermore, R approaches the meta-stable

states N/(
∑N
i=1 ω

χ(i)/R(i)) until a droplet vanishes.

Stationary solutions. We consider possible stationary so-
lutions. We recall that we have already assumed the quasi-
static partial differential equation (12) and the quasi-static
Henry’s law (5). From the Stefan conditions (21) we get
directly thatR(i) = R has to hold for all bubbles i, existing
at time t. Trivially, the mean field c is then stationary,
i.e. constant in time. We exploit (25) in this case in order
to calculate possible stationary radii R∞,

σ

R∞
= ĉl +

4πσε3

3N 0|Q|
(Ns +Nc ω)

1−H
H
R2
∞. (27)

We assume that at least one bubble remains, i.e. N∞ > 0.
Let ξ := N 0

s /N 0 ∈ [0, 1] denote the percentage of the
initial number of spheres w.r.t. the number of all bubbles
for a stationary solution and let ηs = ε3N∞s /N∞, ηc =

ε3N∞c /N∞ ∈ [0, 1] denote the stationary fraction of nano-
spheres and nanocaps, then

R3
∞ − (ĉl/σ)ΞR∞ + Ξ = 0, (28)

where Ξ := 3|Q|H/(4π(1−H)(ηsξ + ηc(1− ξ)ω). A cubic
polynomial in R∞ as the l.h.s. of (28) has a unique non-

negative minimum at
√
ĉlΞ/(3σ) > 0. The minimum

value is negative, yielding two stationary radii, iff ĉl >
3σ(4/Ξ)1/3 which is clearly fulfilled for our data for all ξ,
ηs, and ηc. In case of equality in the latter condition we
would have one stationary radius, otherwise there is none.
In the case ξ = 0.1, i.e. as many caps as spheres, and
ηs = 0, ηc = 1/50 (no spheres persist but 1 of the
initial caps remains), we find numerically R∞ ≈ 220.0 nm
and 2.942 · 1010m (that is irrelevant). The first solution
corresponding to the stationary surface cap width a∞ =
19.17 nm. A comparison with table 1 shows that this
value is within the range of typically widths. Equivalently
for the stationary mean field concentration follows c∞ =
σ/R∞ ≈ 5.0 mol/m3. Neither varying ξ, ηs, ηc nor Θ has
a significant effect on the smaller stationary value.
As we will discuss in the next section for our second
example, the smaller stationary radius is unstable. Only
the situation of no bubble is stable. The situation might
be different when the dynamic equilibrium is taken into
account as in Sperre (2014) or when water vapour in the
bubbles is considered, too.

4. NANODROPLETS IN THE HEAT TREATMENT
OF GALLIUM ARSENIDE WAVERS

A mathematically similar mean field model is proposed
in Kimmerle (2009) within the context of precipitation
of liquid As rich droplets in GaAs crystals, as described
in Sect. 1. This application is different to the hydrogen
bubbles in the sense that the precipitates consist of two
substances, As and Ga, we work with a parabolic equa-
tion, and N 0 ∼ ε−3. For thermodynamic consistency the
considered convex domain Q has to be time-dependent,
too. It is natural for this problem to work with the total
chemical potential u instead of a concentration c as in
the hydrogen electrolysis model. ul is a general form of a
Dirichlet b.c. like (6)2 on the interface. Furthermore, X̃ and
X are given functions modelling inter alia jumps of the As
and Ga concentrations at the interface. In the DC regime
we have for the radii and the mean field of the chemical
potential

∂

∂t
R(i) =

u− ul(R(i))

R(i)X̃(R(i))
∀i ∈ {1, . . . ,N}, (29)

∂

∂t
u = −4π

1
N 0

∑N
i=1R(i)(u− ul(R(i)))

X (u) |Q|
, (30)

with initial conditions R(i)(0) = R(i)
0 , for all i ∈

{1, . . . ,N 0}, u(0) = u0. The latter initial value has to
be computed consistently from an algebraic equation for
u that follows analogouesly as above from a conservation
law (here for As). For the time-dependent domain Q we
use the equation from total conservation of mass.

4.1 Stability of a finite number of liquid droplets

For the material data and further details, we refer to
Kimmerle (2009). Let N0,M0 denote the total amount



of As and total mass, cl, cs denote the As concentration
in the liquid droplets and in the solid crystal, resp., ĉs
the prescribed total concentration. The total number of
atoms in the droplet is nl. ρl and ρs are the mass densities
in liquid and solid. Again R∞ denotes a stationary radius,
while η∞ = N∞/N0 is the stationary precipitate fraction.

Lemma 1. (Necessary & sufficient stationarity conditions).
1) We have stationary solutions with N∞ ∈ {1, . . . ,N 0}
droplets, iff

R(i) = u−1
l (u∞) =: R∞ ∀i ∈ {1, . . .N}, (31)

u∞ = c−1
s

(
N0ĉs − 4π

3 η∞R
3
∞cl(R∞)nl(R∞)

N0 − 4π
3 η∞R3

∞nl(R∞)

)
, (32)

|Q∞| =
M0 − 4π

3 η∞R
3
∞ρl(R∞)

ρs(u∞)
+

4π

3
η∞R3

∞. (33)

2) If we assume that u∞ is concave as function ofR∞, if we
assume that ul is convex in R(i) and if limr→∞ cs(ul(r)) <
ĉs, then (31) has two solutions for the stationary radius
R∞ for sufficiently large N0.
3) In the special case N∞ = 0 we have equilibria iff
u∞ = c−1

s (ĉs) and |Q∞| = M0/ρs(u∞).

In the next theorem we use instability, asymptotic stability
and stability as defined in Walter (1998).

Theorem 2. (Stability of stationary mean field solutions).
We consider a fixed number N∞ of stationary droplets.
(i) The smaller of the two radii R∞ are always unstable
(“critical radius”).
(ii) The larger stationary radii are unstable for N∞ > 1
and asymptotically stable for N∞ = 1.
(iii) For N∞ = 0 the system is stable, but not asymptoti-
cally stable.

For proofs we refer to (Kimmerle, 2009, Lemma 6.3,
Th. 6.1). The latter result uses the Poincaré-Lyapunov
theorem Walter (1998), linearizing around stationary so-
lutions.

5. CONCLUSION AND OUTLOOK

For hydrogen electrolysis, we have proposed a new model
for the evolution of precipitates within the process.
Our model incorporates spherical and cap-like surface
nanobubbles and provides an explanation for their long
lifetimes. Contrary to Sperre (2014), who considers only
one flat surface nanocap in case of a dynamic equilibrium,
we have considered the quasi-static equilibrium of many
bubbles, but without a flat bubble assumption. It might
be interesting to model the evolution of the contact angles
Θ(i), too, but since only cos(Θ(i)) enters in the dynamics
in ω, we shall not expect large effects for small contact
angles.
One of the next tasks will be the incorporation of mi-
cropancakes or possible other forms of microfilms. The
relation between micropancakes and surface nanobubbles
is not completely understood so far.
Another open question is whether fast transportation phe-
nomena near the electrode/electrolyte interface, that have
been observed experimentally by Guiterres et al. (2007),
are relevant for our model. A extension would be to
follow Ward et al. (1970), who propose a model for a
multiphase bubble, e.g. vapour could be present in our

case. This approach might yield further stationary radii,
different stability, and an explanation for nucleation by the
existence of a critical radius. Moreover, this new Mullins-
Sekerka model for spheres and caps exhibits an interesting
interplay between the different types of bubbles. Once our
model has been elaborated further, the next step will be
the optimization of the hydrogen electrolysis. For optimal
control of a macroscopic model for phase transitions, see
Kimmerle (2013).
The results on stationary radii and its stability may be
extended from As-rich droplets in GaAs to the hydrogen
nanobubbles. Note that the results of the GaAs model fit
well to experimental observations, see Dreyer et al. (2008)
as well as the numerical simulations (qualitatively similar
to the first example) in Kimmerle (2009).
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