Dynamic Equilibrium of a Coupled ODE-PDE Problem for Surface Nanobubbles 

Sven-Joachim Kimmerle, Knut Sverdrup, Peter Berg, Proc. Appl. Math. Mech.17, 843 – 844 (2017)

Link zur Verlagsseite

Abstract:

 We consider a mathematical model for surface nanobubbles arising from hydrogen electrolysis in polymer electrolyte membrane (PEM) electrolyzers. Experimental advances in recent years indicated longer lifetimes of surface nanobubbles than may be explained by classical theories. Contrary to [5], we state a full model of an evolving single surface nanobubble yielding a coupled system consisting of a partial differential equation (PDE) for the hydrogen concentration in water and an ordinary differential equation (ODE) for the radius evolution. In the special case of dynamic equilibrium conditions, we prove the well-posedness of this steady state problem by a fixed-point strategy, assuming an acute-angled contact angle, and that the corresponding algorithm allows for its numerical simulation.

 

Reference:
  • Kimmerle, S.-J., Sverdrup, K., Berg, P.: Dynamic Equilibrium of a Coupled ODE-PDE Problem for Surface Nanobubbles. Appl. Math. Mech.17, 843 – 844 (2017), 199-219, DOI: dx.doi.org/10.1002/pamm.201710389.