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Motivation

Weapproximate the 2D-3D couplingby a 1D-3D coupling along the centerline

curve of the fiber Γc via,

r − xS
= 0 on Γc

ψ
SB

= 0 on Γc.

The first set of constraint equations describes the coupling of the positions

along the fiber centerline [2]. Only coupling the positions can lead to an

underestimated sti�ness of the compound structure, therefore, the second

set of constraint equations enforces a coupling of the fiber cross-section

rotations and the solid volume. This rotational coupling will be investigated

here.
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Embedding 1D Cosserat continua (fibers / beams) [1] into 3D solid volumes

requires a consistent method to model the mixed-dimensional coupling

interactions between the two domains. Mechanically, the interaction be-

tween the fibers and the solid volume is defined on the 2D surface of the

fibers, i.e., a 2D-3D coupling.

Discretization
• The rotational coupling constraints are enforced via the Lagrange multiplier method

δΠR

λ =

∫

Γc

δλRT
ψ

SB
ds +

∫

Γc

λRT
δoψ

SB
ds

• Amortar-type approach is used for the spatial discretization of the Lagrangemultiplier field

λ
R(f)
h =

nR(f)
∑

j=1

Φ
R(f)
j (ξB)λ̂

R(f)
j

• Global system of equations resulting frommortar-type discretization of rotational coupling

and positional coupling (according to [2])
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Solid Triad Field
The rotational coupling constraints enforce a vanishing relative (pseudo)-

rotation vector between a beam cross-section triadΛB and a corresponding

soldid triadΛS , cf. [3],

ψ
SB

= rv

(

Λ
S
Λ

BT
)

= 0.

Onemain contribution of this work is the definition of a suitable solid triad

field in the solid (Boltzmann) continuum.

A pure shear problem is 
considered as a bench-
mark example (with a 
�ne reference solution)
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sion of the 2D-3D coupling leads 
to the following solid triad �ed:

Λ
S
= F

with the the solid deformation gra-

dientF
Catastrophic shear locking!
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As an alternative, the solid triad

can be obtained as the rotational

part of the polar decomposition

of the solid deformation gradient

F = RU :

Λ
S
= R

τ

τ

τ

τ

Very good agreement with 
the reference solution!

Numerical Examples
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Patch tests are ful�lled
Spatial convergence for reasonable beam 

to solid element size ratios

Twisted composite plate
Only positional and rotational coupling results 
in a correct sti�ness of the compound strucutre

Large scale composite plate
The presented method is suitable 
for large scale appliacations

1D-3D


