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here a generalization of the �nite element results to polyhedral domains and to moregeneral di�erential operators and prove asymptotic error estimates which exhibit optimalconvergence rates with decreasing mesh size. | Finite element error estimates in theenergy norm are usually proved via C�ea's lemma by estimating the interpolation error,see for example [13], and we adopt this approach in Subsection 3.3. However, if thesolution is not smooth enough, so that pointwise values are not well de�ned, we haveto use an alternative approximation operator. Because this case can arise, we give inSubsection 3.4 an error estimate using the approximation operator �rst introduced in[45].Finally, we show with two numerical experiments how the theory can be applied.Examples are given for the Lam�e system in a two-dimensional L-shaped domain, and forthe Poisson equation in a three-dimensional polyhedral domain with three 270�-edgesmeeting in one corner (Fichera corner). Both examples demonstrate the e�ciency ofour technique in terms of \actual" errors for speci�c (�nite) mesh sizes in addition tothe asymptotic rates of convergence. Note that other numerical tests for treating thePoisson equation in a three-dimensional domain have been documented in [4, 5].2 Regularity results2.1 The boundary value problemsWe consider the following linear elliptic boundary value problemsA(x;Dx)u(x) = f(x) in 
 (2.1)Bj(x;Dx)u(x) = 0; j = 1; : : : ; m; on @
 nM (2.2)with A(x;Dx)u(x) := Xj
j;j j�m(�1)j
jD
x(a
 (x)D x )u(x):= Xj�j�2ma�(x)D�xu(x) (2.3)Bj(x;Dx)u(x) := Xj�j�mj bj;�(x)D�xu(x); j = 1; : : : ; m; (2.4)where 
 is a bounded domain in IRn (n = 2; 3) with conical points (for example polygonsin IR2), with non-intersecting edges (for example rotationally symmetric domains inIR3) or with corners of polyhedral type (polyhedrons in IR3). We assume that thecoe�cients of A are smooth and real, and that the coe�cients of Bj (j = 1; : : : ; m)are piecewise smooth and real; this last condition means that the type of boundarycondition may change. In this case we denote by Bij(x;Dx) the restriction of Bj to thepieces @
i � @
, �SIi=1 @
i = @
; @
i \ @
k = ; for i 6= k�. We denote by M the setof singular boundary points, which consists of corner-points, edges, and points (lines)at which the type of the boundary condition changes.Note that we have restricted problem (2.1{2.2) to the case of homogeneous boundaryconditions. This is important as in the weak formulation the solution and the testfunctions lie in the same space; thus it makes the analysis simpler.In order to treat problem (2.1{2.2), we derive its weak form. Due to the fact that fornon-smooth domains special Green's formulae hold [20, Theorem 1.5.3.11., p. 61] [40,Lemma 1, p. 568] which include additional terms generated by the set M , we introducethe set C1M (
) := fu 2 C1(
) : supp u\M = ;g and de�ne a space V as the closure offu 2 C1M (
) : Bij(x;Dx)u = 0 on @
i for all i; j with ord(Bij) � m� 1g in Wm;2(
).2



With V � being the dual space of V , the weak formulation is: Find a solution u 2 Vsuch that for a given f 2 V �a(u; v) = hf; vi for all v 2 V; (2.5)a(u; v) := Xj
j;j j�m Z
 a
 (x)D uD
v dx++ IXi=1 mXj=1 Z@
i GijuFijv d�;hf; vi := Z
 fv dx;where the boundary operators Gij and Fij are appropriate normal boundary systems(for the de�nition of normal boundary systems see for example [49, x14]) which aregenerated by the essential boundary operators Bij(x;Dx) on @
i.We also assume that the coe�cients in (2.3) and (2.4) are such that the weak problem(2.5) has a uniquely determined solution u 2 V; or more precisely, that the assumptionsof the Lax-Milgram theorem hold:ja(u; v)j � c1ku;Wm;2(
)k kv;Wm;2(
)k for all u; v 2 V; (2.6)a(u; u) � c2ku;Wm;2(
)k2 for all u 2 V: (2.7)2.2 Statement of the regularity problemThe regularity theory for elliptic boundary value problems in non-smooth domains withcorners and edges is well developed, especially in the framework of weighted Sobolevspaces. Speci�cally, boundary value problems in domains with conical points are handledin [22], in domains with non-intersecting edges in [23, 29, 31], and in polyhedral domainsin [15, 30, 37]. The �eld is treated in [20] in standard Sobolev spaces.We formulate here regularity results for solutions of the general weak problem (2.5)in the following weighted Sobolev spaces: Let 
 be a bounded domain with the set Mof singular boundary points. The space V k;p(
; �) is the closure of the set C1M (
) withrespect to the normku;V k;p(
; �)k = 0@ Xj�j�k Z
 rp(��k+j�j)jD�ujpdx1A1=p ; (2.8)where r = r(x) = dist(x;M) and � is a real number. We remark that V k;p(
; �) �V k�1;p(
; � � 1).Let u 2 V be the weak solution of (2.5) for f 2 L2(
). We consider now theregularity problem, for which � the solution u is contained in the space V 2m;2(
; �).Let us emphasize the crucial point. We start with a solution u 2 V from a standardSobolev space. But the space V � Wm;2(
) does not belong automatically to the scaleof weighted Sobolev spaces (2.8). Therefore we demand thatu 2 V \ Vm;2(
; 0) (2.9)when f 2 L2(
). In [41, Property (R)] it is shown that (2.9) is satis�ed for a largeclass of problems including Dirichlet problems and mixed boundary value problems. |Assumption (2.9) can be omitted if M does not contain edges.The investigations in the papers mentioned above show that the distribution of theeigenvalues of a parameter dependent boundary value problem is crucial to the regularityof the solution. One can get this parameter dependent boundary value problem byconsidering the principal parts of A and Bj in (2.1{2.4) with frozen coe�cients at pointsof M , using spherical coordinates, followed by a Mellin transform with respect to r.3
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2 !0Figure 2.1: Sample domain.2.3 Domains with conical pointsLet us illustrate this approach �rst for a domain 
 � IRn (n = 2; 3) which has onlyone conical point O on its boundary. For simplicity we assume that there is a ball-neighbourhood of O, for which 
 coincides with the cone K = f(r; !) : 0 < r <1; ! 2Gg. Here we further assume that G, the intersection of 
 with the surface Sn�1 of theball-neighbourhood, is a smooth domain.We consider a special boundary value problem in K, which is generated by theprincipal parts of A and Bj with frozen coe�cients in O:A0(O;Dx)u(x) := Pj�j=2m a�(O)D�u(x) = f(x) in K;B0;j(O;Dx)u(x) := Pj�j=mj bj;�(O)D�u(x) = gj(x) on @K;(j=1,: : : ,m). Introducing spherical coordinates (r; !) and using the Mellin transformû(�; !) = 1p2� Z 10 r���1u(r; !)drwe obtain a boundary value problem with the parameter �:L(!;D!; �)û(�; !) = F̂ (�; !) for ! 2 G;Mj(!;D!; �)û(�; !) = Ĝj(�; !) for ! 2 @G; j = 1; : : : ; m; (2.10)where F = r2mf and Gj = rmjgj.The distribution of the eigenvalues � (those complex numbers �0 for which non-trivial solutions û of (2.10) for F̂ = 0 and Ĝj = 0 (j = 1; : : : ; m) exist) in a certain stripin the complex plane determines the regularity. The following theorem was proved in[22] and can also be found in [27, 41].Theorem 2.1 Let 
 be a bounded domain with one conical boundary point O. The weaksolution u of (2.5) with the right hand side f 2 L2(
) is contained in V 2m;2(
; m�H0+"): ku;V 2m;2(
; m�H0 + ")k � Ckf ;L2(
)k; (2.11)where H0 = Re(�0)� (�n2 +m). Here, �0 is such an eigenvalue of problem (2.10), thatthe strip �n2 + m < Re(�) < Re(�0) is free of eigenvalues, and " > 0 is an arbitrarilysmall real number.Example 2.1 Let 
 be a plane domain with only one corner point O with the angle!0. We consider the mixed boundary value problems (see Figure 2.1)4
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Figure 2.2: Diagram of H0(!0) for the two-dimensional example.��u = f in 
;u = 0 on @
1;@u@n = 0 on @
2; (2.12)and �Lu = f in 
;u = 0 on @
1;S[u] � n = 0 on @
2; (2.13)where L is the Lam�e operator de�ned byLu := ~��u+ (~�+ ~�) graddivu (2.14)with the Lam�e coe�cients ~� and ~�, S[u] denotes the stress tensor with Cartesian com-ponents [S(u(x))]ij := ~� "@ui@xj + @uj@xi #+ �ij~�r � u(x):Here, ui is the i-th component of u, �ij is the Kronecker delta, and n denotes the outwardnormal to @
 at the point x.We have H0 = �2!0 for problem (2.12) and get for problem (2.13) that the eigenvalues�0 are the zeros of the transcendental equationsin2 �!0 = ��2(~�+ ~�)2 sin2 !0 + (~�+ 2~�)2(~�+ ~�)(~�+ 3~�)[42] and H0 = H0(!0) can be calculated, see Theorem 2.1. Figure 2.2 shows the graphsof H0 = H0(!0) for problem (2.12), and (2.13) for the material constants ~� := ~�+~�~� = 10(lead) and ~� = 1:51515 (concrete). 5
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Figure 2.3: Diagram of H0(#0) for the three-dimensional example.Example 2.2 Let 
 be a three-dimensional domain with a conical point O which co-incides in a neighbourhood of O with a circular coneK := f(r; '; #) : 0 < r <1; 0 � ' < 2�; 0 � # < #0gand consider the boundary value problems��u = f in 
u = 0 on @
 (2.15)and �Lu = f in 
u = 0 on @
 (2.16)where L is again the Lam�e operator (2.14).The values of H0 = H0(#0) are calculated for problem (2.15) for example in [11] andfor problem (2.16) for the Poisson ratio � = 0:3 in [9, 10] under rotationally symmetricforces. If the loading is not rotationally symmetric the singularity can be more signi�cant[43]. Figure 2.3 shows the graphs of H0(#0) in these three cases.Remark 2.1 A very general estimate for H0 is proved in [24] for the �rst and secondboundary value problems for strongly elliptic systems of the order 2m; namely thatH0 � 12 in these cases.2.4 Domains with edgesWe now consider a domain 
 � IR3 with a single edgeM . Assume there is a neighbour-hood of each point of M in which 
 is di�eomorphic to a three-dimensional dihedralangle D := K � IR, where K := f(r; !) : 0 < r < 1; 0 < ! < !0g. Let z0 be a point ofM and Dz0 the corresponding dihedral angle. For simplicity assume that 
 coincides ina ball-neighbourhood of z0 with the dihedral angle Dz0 . We take in this neighbourhoodthe Cartesian coordinate systemx = (y; z) = (y1; y2; z); y ? z; y 2 K; z 2 IR;6



and consider the special boundary value problemA0(z0; Dx)u(x) = Pj�j=2m�1+�2=� a�(z0)D�1y D�2z u(x) = f(x) in Dz0B�0j(z0; Dx)u(x) = Pj�j=mj�1+�2=� b�j;�(z0)D�1y D�2z u(x) = g�j (x) on ��z0 ;j = 1; : : : ; m;where ��z0 are the faces of Dz0 .After the real Fourier transformation with respect to z and the normalization of thecorresponding parameter [27, 29] we get a two-dimensional boundary value problemA0(z0; Dy; �)u = f in Kz0B�0j(z0; Dx; �)u = g�j on @K�z0 ; j = 1; : : : ; m: (2.17)with � = �1. Using polar coordinates (rz0 ; !), rz0 = jy � z0j, we again consider theprincipal parts of (2.17)A0(z0; Dy; 0) = r�2mz0 L(!;D!; rz0Drz0 )B�0j(z0; Dx; 0) = r�m�jz0 M�j (!;D!; rz0Drz0 ) j = 1; : : : ; m:After the Mellin transform with respect to rz0 we get the operator pencilA0(z0; �) := fL(!;D!; �);M�j (!;D!; �)gj=1;:::;m: (2.18)The distribution of the eigenvalues of A(z0; �) in a certain strip of the complex planeyields regularity results.Theorem 2.2 Let 
 be a bounded domain with the edge M � @
. Assume the weaksolution of (2.5) with the right hand side f 2 L2(
) is contained in V \ V m;2(
; 0), seecondition (2.9). Then u belongs to V 2m;2(
; m�H0 + "):ku;V 2m;2(
; m�H0 + ")k � Ckf ;L2(
)k; (2.19)where H0 = Re(�0) � (�1 + m). Here, �0 is the element from f�0(z0)gz02M with thesmallest real part and �0(z0) is such an eigenvalue of the operator (2.18), that the strip�1+m < Re(�) < Re(�0(z0)) is free of eigenvalues. Again " > 0 is an arbitrarily smallreal number [29, 40].2.5 Polyhedral domainsFinally we consider polyhedral domains in IR3. In this case we have to distinguishbetween corner and edge singularities. The corner singularities can be handled analo-gously to the conical points, and we have only to notice that the domain G in (2.10),the intersection of 
 with the surface of the ball-neighbourhood considered, now hascorner points.Let us introduce the leading eigenvalues �0 associated with the corner problemsand the leading eigenvalues associated with the edge problems. Thus we de�ne �0(Oi)for every corner point Oi as that eigenvalue of the modi�ed boundary value problem(2.10) for which the strip �32 +m < Re(�) < Re(�0(Oi)) is free of eigenvalues. Then,�0 2 f�0(Oi)gi is the eigenvalue �0(Oi0) with the smallest real part. For every edgeEj we consider the eigenvalues �0(Ej) which are de�ned in Theorem 2.2 and take the�0 2 f�0(Ej)gj with the smallest real part. Finally, letH0 := minfRe(�0)� (�32 +m);Re(�0)� (�1 +m)g: (2.20)Then the following result holds [30, 32]. 7



Theorem 2.3 Let 
 be a polyhedron in IR3. The weak solution u of (2.5) with the righthand side f 2 L2(
) for which (2.9) holds is contained in V 2m;2(
; m�H0 + "):ku;V 2m;2(
; m�H0 + ")k � Ckf ;L2(
)k; (2.21)where H0 is given by (2.20) and " > 0 is an arbitrarily small real number.Remark 2.2 It is proved in [26] that H0 � 12 for the Dirichlet problem for stronglyelliptic systems in polyhedral domains.Remark 2.3 It is possible to obtain a more precise estimate for H0 than that given inRemark 2.2 using the results for a circular cone (compare Example 2.2) for the Dirichletproblem for the Poisson equation (2.15) or for the Lam�e equation system (2.16), wheref is a non-rotationally symmetric force.There is a relationship between the size of the eigenvalues and the size of domainsin form of a monotonicity principle. It was proved in [17, 28] for the Laplacian: For theregion G (arising from the polyhedral cone) the dominant �0 is not less than that forthe rotationally symmetric part of the unit ball with the same surface area as G. Notethat the eigenvalues �0 are real.For the Lam�e equation system the following result holds [25]: Let Ki = (0;1)�Gi(i = 1; 2) be cones in IR3, where Gi � S2 can have corners. Then for the eigenvalues�k(Gi) holds Re(�k(G2)) � Re(�k(G1)) if G1 � G2 and if �k 2 (�12 ;�~�(G)), where~� = ~�+~�~� and �~�(G) � 1 is some real number.3 Finite element methods3.1 Graded partitionsLet 
 be a polygonal domain in IR2 or a polyhedral domain in IR3. We consider a familyof partitions Th of 
 with the usual regularity properties:(a) 
 = S
e2Th 
e, where 
e are polygons in IR2 (triangles or quadrilaterals) or poly-hedra in IR3 (for example tetrahedra or bricks),(b) 
e1 \ 
e2 = ; for e1 6= e2,(c) any edge (for n = 2; 3) or face (for n = 3) of 
e1 is either a subset of @
 or anedge or face of another 
e2 .Denote by he the diameter of 
e and by %e the diameter of the largest inner ball of
e, then we assume that there is a constant � independent of Th with(d) he%e < � for all e with 
e 2 Th.The quotient he=%e is called aspect ratio of the element. | Further denote h = max
e2Th he.In order to treat the singularities of the solution near the irregular part M of theboundary, we assume that the partition Th is graded in the following way:(e) if 
e \M 6= ; then C1h1=� � he � C1h1=�,if 
e \M = ; then C2hr1��e � he � C2hr1��e ,where re = dist(
e;M), and � 2 (0; 1] is a parameter to control the grading. Note thatfor � = 1 an unre�ned partition is produced.Such re�nements were studied for the Poisson problem in polygonal domains in[20, 34, 39] and in three-dimensional domains with edges in [4]. Approximation resultscan also be found in [18, 19]. We give here a generalization of these results to polyhedraldomains and to more general di�erential operators.8



Figure 3.1: Construction of graded meshes using layers.Remark 3.1 The number of elements 
e with 
e \M 6= ; is bounded by a quantityof the order Ch�dim(M)e = Ch�dim(M)=�. On the other hand the number of elements
e with 
e \M = ; is bounded by Ch�n for � > dim(M)n . This can be shown by thefollowing calculation: Xe:
e\M=; 1 = Xe:
e\M=;Ceh�ne Z
e 1d
� Ch�n Xe:
e\M=;r�n(1��)e Z
e 1d
� Ch�n Xe:
e\M=;Z
e r�n(1��)d
= Ch�n Z
 r�n(1��)d
:The integral is bounded i� �n(1 � �) > �n + dim(M). That means, that the numberof elements does not increase asymptotically in comparison with a non-re�ned mesh,if dim(M) = 0 (that means, we have only corners, no edges) or � > 13 (dim(M) = 1,n = 3).For � � 13 and dim(M) = 1 one gets by a similar calculation a number of elementsof the order h�3 ln h for � = 13 and h�1=� for � < 13 .We discuss now possibilities for the construction of graded partitions and start withthe two-dimensional case. Consider a polygonal domain 
 with a corner point O, atwhich a singularity occurs. Following [34] we introduce in a neighbourhood D := fx 2
 : dist(x;O) < bg of some radius b the N layers di := fx 2 
 : ri�1 < dist(x;O) � rig(i = 1; : : : ; N) with ri := b( iN )1=� (i = 0; : : : ; N), which are approximately partitionedinto triangles of mesh size hi := ri � ri�1 (i = 1; : : : ; N); see Figure 3.1 for N = 3,� = 0:4.For such partitions one can easily calculate [2], that1N b�r1��i � hi � 1�N b�r1��i ; i = 1; : : : ; N; (3.1)hi�1 � hi � (21=� � 1)hi�1; i = 2; : : : ; N; (3.2)ri�1 � ri � 21=�ri�1; i = 2; : : : ; N: (3.3)With N being of the order h�1 the desired property (e) is ful�lled. | Note that thesecond relation (3.2) leads to adjacent elements that are of comparable size and thatcondition (d) is ful�lled though � = �(�) may become large when � is small. Howeverelements that are remote from each other are not of comparable size. For example wehave h1 = O(h1=�N ). 9



Figure 3.2: Construction of graded meshes using an initial triangulation.
Figure 3.3: Graded meshes with quadrilaterals.For an easier construction of the mesh outside the neighbourhood D one can ap-proximate the arcs by polygons. According to [39] this construction can be described asfollows. We consider a rough initial triangulation of 
 into elements of size O(1). Noweach triangle is divided into N2 elements: If the corner O is not a vertex of the triangleit is subdivided into N2 congruent elements. For triangles near the corner we put thenodes graded towards the corner, in the sense that their barycentric coordinate ~b withrespect to the side opposite to the corner O is chosen as 1 � � iN �1=� instead of 1 � iN(i = 1; : : : ; N), see Figure 3.2 for N = 3. | Though the aspect ratio � of the elementsdepends also on the initial triangulation, the condition (d) is always ful�lled.The same technique can be applied for constructing meshes with quadrilateral el-ements, see Figure 3.3, and also for graded meshes near corners in three-dimensionaldomains.For three-dimensional domains with edges it is a natural idea to reproduce thetwo-dimensional graded meshes constructed in a plane perpendicular to the edge. Butbecause of h1 = O(h1=�N ) this yields elongated elements, which do not ful�l property(d), see Figure 3.4. We remark that these so called anisotropic meshes have also beensuccessfully used for the approximation of solutions of boundary value problems indomains with edges, see [3], but for error estimates the data was assumed to be smootherthan that here.In order to ful�l assumption (d) in graded meshes near edges, one can de�ne inanalogy with the two-dimensional case N layers around the edge with diameter hi(i = 1; : : : ; N), hi as introduced above. Then one starts with �lling the inner layerwith tetrahedra of diameter h1, and continues with �lling the subsequent layers withtetrahedra using the boundary nodes of the previous layer. In this strategy one exploitsagain relation (3.2). | A more practical way of constructing the partitions seems to be10



h1=� hFigure 3.4: Anisotropic, graded mesh near an edge.the following which is adopted from a posteriori mesh re�nement techniques: Start withan initial triangulation (
 = S
e) and divide all elements 
e into 2n smaller ones until(e) is ful�lled with suitable constants C1, C1, C2, and C2 (for example C1 = b1�1=�,C1 = 2C1, C2 = 1�b�, C1 = 2C2, compare (3.1), with some modi�cation of C2 forelements with re close to b). Then divide all elements with irregular nodes in order toful�l (c), compare Figure 4.2.Finally we remark that it seems to be possible to construct the desired gradedpartition also using a mesh density function on a background mesh, compare [35, 38],but the authors have no experience with such codes yet.3.2 Finite element methods on graded partitionsIn the following we want to consider a �nite-dimensional space Sh of piecewise polyno-mials with the following properties:Conformity, that means Sh � V , with V given in (2.5),Transformability, in the sense that the elements shall belong to an a�ne or isopara-metric family,Approximability, in the sense that limh!0 infvh2Sh ku� vh;W 1;2(
)k = 0.For m = 1 (di�erential operators of second order) these conditions are ful�lled forexample by Langrangian C0-elements. But it is di�cult to construct elements for thecases m > 1 with these properties (see [13, Chapter 7] for m = 2), and many di�erentelements with di�erent advantages and disadvantages are in use. That is why we restrictour consideration to second order problems.The �nite element solution Phu of problem (2.5) is de�ned bya(Phu; vh) = hf; vhi for all v 2 Sh: (3.4)Because a(:; :) ful�ls (2.6{2.7), Ce�a's lemma impliesku� Phu;W 1;2(
)k � C infuh2Sh ku� uh;W 1;2(
)k: (3.5)When u is smooth enough so that the interpolant Ihu of u in Sh is well de�ned, theinterpolation error in W 1;2(
) gives a bound for the �nite element error. This caseis studied in Subsection 3.3. Otherwise we have to consider another approximationoperator. In Subsection 3.4 we apply the operator which was introduced in [45].Lemma 3.1 The condition number of the sti�ness matrix A which is related to problem(3.4) is of order h�2 if � > n�2n and of order h1�(1+")=� otherwise. These bounds aresharp. 11



The upper bound for the condition number is proved for the two-dimensional casein [34] and for the case of non-intersecting edges in [4]. The proof extends easily to themore general case of polyhedrons included here and is omitted. An example that showsthat the estimate is sharp is given for the three-dimensional case in [4], but it is alsovalid in the two-dimensional case.Remark 3.2 In the proof of Lemma 3.1 the special geometry of the mesh (especiallycondition (e)) is exploited. Another approach for investigating the condition number isdemonstrated in [8] by using scaled basis functions. It leads to a condition number oforder h�2 in three dimensions but only to h�2j ln hj for � < 1 in two dimensions.The advantage consists of the applicability to a wider class of re�ned �nite elementmeshes including the meshes employed here for any � 2 (0; 1]. Consequently, the useof scaled basis functions can be recommended for problems with edges and � � 13 inorder to improve the condition number. In other words, the scaling then works like apreconditioner.Note, that the result presented in Lemma 3.1 is valid for the usual basis functionswith a maximum norm equal to one.3.3 Interpolation error estimatesIn this subsection we consider the interpolation function Ihu 2 Sh � V by demandingIhu = u at all nodes of Th: (3.6)That means we assume u 2 C(
), but for the proof of the local interpolation errorestimate given below we need the more restrictive condition u 2 Wn=2+";2(
), " > 0arbitrarily small. Note that the embedding V 2;2(
; 1 � H0 + ") ,! Wn=2+";2(
) [27]holds, if H0 > n2 � 1; (3.7)which is a restriction for problems with edges.The advantage of interpolation is that it produces an approximation error estimatelocally in each element, and these have been studied for example in [13]. For our purposeswe state only the result that for u 2 W 2;2(
e) the relationku� Ihu;W 1;2(
e)k � Chekr2u;L2(
e)k (3.8)holds, r` denotes the vector of all partial derivatives of order `.Theorem 3.2 Let 
 be a polygonal domain in IR2 or a polyhedral domain in IR3 withthe set M of singular boundary points. Let Th be a family of graded partitions of 
as de�ned in Subsection 3.1, and H0 the number given in Theorem 2.1 or 2.3. ForH0 > n2 � 1, the �nite element error can be estimated byku� Phu;W 1;2(
)k � Ch�kf ;L2(
)k (3.9)with � = ( 1 for � < H0;H0 � "� for � � H0; (3.10)" > 0 arbitrarily small.Proof It follows from (3.5) thatku� Phu;W 1;2(
)k2 � Cku� Ihu;W 1;2(
)k2= C X
e2Th ku� Ihu;W 1;2(
e)k2: (3.11)12



If 
e\M = ; it follows from the interior regularity results [1] that u 2 W 2;2(
e). Using(3.8) we get ku� Ihu;W 1;2(
e)k2 � Ch2ekr2u;L2(
e)k2� Ch2er�2�e Z
e r2�e jr2uj2dx� Ch2er�2�e ku;V 2;2(
e; �)k2 (3.12)with � = 1�H0 + ". Using (e) we haveher��e � Chr1����e � Ch for 1� �� � � 0; (3.13)that means � � H0 � ". Because " > 0 is arbitrarily small this condition reduces to� < H0. For � � H0 we can only estimate (using he � Cre)h1er��e = h�e h1��e r��e � Ch�r�(1��)e r1��e r��e= Ch�r1�����e = Ch�rH0�"���e = Ch� (3.14)for � = H0 � "� . For larger �, the term rH0�"���e becomes unbounded for re tending to0. From (3.12{3.14) we can concludeku� Ihu;W 1;2(
e)k2 � Ch2�ku;V 2;2(
e; 1�H0 + ")k2 (3.15)with � from (3.10).If 
e \M 6= ; we do not have the relation u 2 W 2;2(
e). We split in the followingway and estimate both terms:ku� Ihu;W 1;2(
e)k2 � 2ku;W 1;2(
e)k2 + 2kIhu;W 1;2(
e)k2: (3.16)Because of r < he in 
e we haveku;W 1;2(
e)k2 = 1X̀=0 kr�`+2��r��2+`r`u;L2(
e)k2� 1X̀=0 h2(�`+2��)e kr��2+`r`u;L2(
e)k2� h2(1��)e 1X̀=0 kr��2+`r`u;L2(
e)k2� h2(1��)e ku;V 2;2(
e; �)k2: (3.17)For the estimation of the norm of Ihu we use the inverse inequality and on thereference element 
0 the embedding V 2m;2(
0; �) ,! C(
0), which holds for � � 0:kIhu;W 1;2(
e)k � Ch�1e kIhu;L2(
e)k= Ch�1e h�n=2e kIhu;L2(
0)k� Ch�1�n=2e kIhu;C(
0)k� Ch�1�n=2e ku;C(
0)k� Ch�1�n=2e ku;V 2;2(
0; �)k� Ch�1�n=2e h2��+n=2e ku;V 2;2(
e; �)k� Ch1��e ku;V 2;2(
e; �)k: (3.18)From (3.16{3.18), � = 1�H0 + " and he = h1=� we concludeku� Ihu;W 1;2(
e)k � Ch(H0�")=�ku;V 2;2(
e; 1�H0 + ")k (3.19)Together with (3.11) and (3.15), as well as (2.11) and (2.21) this �nishes the proof.13



Remark 3.3 The restriction to polygonal/polyhedral domains is not essential in theapplication of graded �nite element meshes for solving partial di�erential equations withsingular solutions. Because the analytical behaviour of the solution of such boundaryvalue problems can also be formulated in terms of weighted Sobolev spaces, it can beconjectured that similar graded partitions will also lead to optimal convergence results,because the new di�culty which arises is not due to the singularities.The new di�culty is the treatment of the curved parts of the boundary, which canbe done in a non-conforming way by placing the boundary nodes of the approximatingdomain 
h on the boundary @
 (see for example [50]) or in a conforming way byapproximating the part @
1 � @
 with the essential boundary condition by a part@
1h � @
h with @
1h � 
 and approximating the part @
2 � @
h with the naturalboundary condition by a part @
2h 6� 
 (see for example [34]). In both cases additionalerror terms have to be estimated.The conforming way which is not always applicable (for example it cannot be donefor vector functions with given boundary conditions of di�erent type in the componentson some part of the boundary), is investigated for Poisson problems in three-dimensionaldomains with edges (without corners) for essential boundary conditions in [2] and fornatural boundary conditions in [4].3.4 Relaxation of an assumptionIf the solution u from (2.5) is not contained in W s;2(
) for some s > n2 , then thepointwise values of u are not well de�ned, and the interpolation operator introduced in(3.6) cannot be employed without modi�cation. But other approximation operators canbe constructed by replacing the nodal values of u by the nodal values of one or morecontinuous functions v (or vi) which are close to u in some sense. Such operators werestudied by di�erent authors including [14, 34, 45, 47]. In the following we want to use theoperator described by Scott and Zhang [45], and we have to restrict the considerationto simplicial elements.In Sh we consider the nodal basis f�jgJj=1 of functions �j 2 Sh with �j(xi) = �ij(i; j = 1; : : : ; J), where xi are the nodal points of our �nite element mesh, J is theirnumber, and �ij is the Kronecker delta. Let an approximation �hu 2 Sh be de�ned by(�hu)(x) := JXi=1 vi(xi) � �i(x); (3.20)where vi 2 C(�i) is the L2-projection (see Remark 3.4) of u in Shj�i . The subdomains�i (i = 1; : : : ; J) with xi 2 �i are chosen by the following rules (see also Figure 3.5):� If xi is an interior point of some n-simplex 
e0 � Th then �i := 
e0 :� Otherwise xi is boundary point of one or more n-simplices 
e and �i is chosen assome face & (which is a (n� 1)-simplex) of one of these elements 
e � Th:{ If there is an & so that xi is an interior point of & , then �i is uniquely deter-mined by �i := &:{ If not, then �i is taken as one of the faces with xi 2 & , but with the restrictionthat �i � @
 if xi 2 @
:Remark 3.4 The L2(�i)-projection vi of u in Shj�i is de�ned byku� vi;L2(�i)k = minv2Sh j�i ku� v;L2(�i)k (3.21)14



(a) interior point of triangle (b) interior point of edge
(c) vertex at boundary(2 possibilities for �i) (d) vertex within the domain(here: 6 possibilities for �i)Figure 3.5: Choice of �i in dependence on xiand can be determined in the following way: Denote by n0 the dimension of Shj�i andlet f�ijgn0j=1 be the nodal basis for �i with �ij(xk) = �jk (j; k = 1; : : : ; n0), and f ijgn0j=1its L2(�i)-dual basis: Z�i  ij(x)�ik(x)dx = �jk (j; k = 1; : : : ; n0):Then we get as a standard property of a projectionvi(x) = n0Xj=1 Z�i u(�) ij(�)d� � �ij(x):Note that this formula simpli�es for x = xi:vi(xi) = Z�i u(�) ii(�)d�:Note further that (though it is originally de�ned by (3.21) for u 2 L2(�i)) this approachcan be extented to functions u 2 L1(�i) because the polynomial functions  ij are fromL1(�i) so that the integral is �nite. That means, the approximation operator �h :W k;p(
)! Sh can be de�ned fork � 1 for p = 1; k > 1p otherwise. (3.22)The restrictions on k and p in (3.22) follow from a trace theorem and guarantee thatuj�i 2 L1(�i) also for (n�1)-dimensional �i, but this is no restriction for our application.Remark 3.5 The approximation operator �h does not only preserve homogeneousDirichlet conditions but also inhomogeneous conditions u = g on @
 (at least in thesense of L1(@
)) if g 2 Shj@
.Denote by �e := int �Sf
i : 
i \ 
e 6= ;;
i 2 Thg� the patch of elements around
e and note that �i � �e for all i with xi 2 
e. If k 2 IN and p 2 [1;1] ful�l (3.22)15




eFigure 3.6: Illustration of �ethen under the assumption (d) the following local approximation property holds foru 2 W k;p(�e) [45]:kr`(u� �hu);Lp(
e)k � Chk�`e krku;Lp(�e)k; 0 � ` � k � d+ 1: (3.23)Here, d is the polynomial degree of the shape functions and he is the diameter of 
e asintroduced above.This estimate allows for a �nite element error estimate similar to Theorem 3.2 butwithout the restriction (3.7).Theorem 3.3 Theorem 3.2 holds without the assumption H0 > n2 � 1.Proof The �rst part of the proof is similar to that of Theorem 3.2, but we consider�h instead of Ih:ku� Phu;W 1;2(
)k2 � Cku� �hu;W 1;2(
)k2= C X
e2Th ku��hu;W 1;2(
e)k2: (3.24)For all elements 
e with �e \M = ; we can use (3.23) with ` = 0; 1, k = 1, p = 2and get ku� �hu;W 1;2(
e)k2 � Ch2ekr2u;L2(�e)k2� Ch2er�2�e ku;V 2;2(�e; �)k2: (3.25)Here we have used the fact that there is a constant C such that re � Cdist(�e;M)holds, which follows fromre � dist(�e;M) + he0 = dist(�e;M) + C 0h(dist(�e;M))1��for su�ciently small h, see Figure 3.6 for an illustration. In the same way as in theproof of Theorem 3.2 we conclude from (3.25)ku� �hu;W 1;2(
e)k2 � Ch2�ku;V 2;2(�e; �)k2 (3.26)The second part of the proof is even simpler than in the previous proof, because(3.23) holds also for k = 1. For elements 
e with �e \M 6= ; we deriveku��hu;W 1;2(
e)k � Ckru;L2(�e)k: (3.27)Because adjacent elements are of comparable size (see for example (3.2)), and the di-ameter of elements touching the set of irregular boundary pointsM is of the order h1=�,we have r � Ch1=� for all points in �e. This leads in the same way as in (3.17) tokru;L2(�e)k � Ch(1��)=�ku;V 2;2(�e; �)k (3.28)16



@
1@
2@
3OFigure 4.1: The domain of the test problem with the initial mesh.� = 1:0 � = 0:75 � = 0:5 � = 0:4 � = 0:3i nodes �=103 � �=103 � �=103 � �=103 � �=103 �0 8 2.5321 2.5321 2.5321 2.5321 2.53211 21 2.7524 -0.120 2.7772 -0.133 2.8093 -0.150 2.8550 -0.173 3.0302 -0.2592 65 2.5259 0.124 2.3787 0.223 2.2493 0.321 2.2806 0.324 2.5064 0.2743 225 2.0650 0.291 1.7980 0.404 1.5340 0.552 1.5131 0.592 1.6663 0.5894 833 1.6288 0.342 1.3019 0.466 0.9761 0.652 0.9157 0.725 0.9766 0.7715 3201 1.1542 0.497 0.8417 0.629 0.5425 0.858 0.4781 0.937 0.4989 0.969Table 4.1: Estimated error � in the energy norm for various mesh sizes and gradingsand the derived approximation order �From (3.27) and (3.28) we conclude with � = 1�H0 + " and H0 + "� � �, that (3.26)also holds in the case �e \M 6= ;. Due to (3.24) and the fact that only a �nite number(independent of h) of patches �e overlap, the theorem is proved.4 Test examples4.1 Lam�e system in a two-dimensional domainWe consider the Lam�e system Lu = 1 with L from (2.14) in a two-dimensional L-shapeddomain, together with boundary conditionsu1 = u2 = 0 on @
1;T1[u] = T2[u] = 0 on @
2;u1 = T2[u] = 0 on @
3;see Example 2.1 for the notation and Figure 4.1 for an illustration. Additionally we letT1[u], T2[u] be the components of the normal stress: (T1[u]; T2[u])T := S[u] � n. TheLam�e coe�cients are those of concrete, namely ~� = 2:20, ~� = 4:27. The boundary ischosen such that we have only one singularity of the solution in the strip (0; 1), namelynear point O with H0 � 0:34, see Figure 2.2. Note that the boundary condition on @
3is typical for an axis of symmetry.The problem was solved with mesh sizes hi = 2�i (i = 0; : : : ; 5; for i = 0 see the meshin Figure 4.1) and grading parameters � = 1:0, 0:75, 0:50, 0:40, and 0:30. The energynorm of the �nite element error was estimated with an error estimator of residual type[7, 33]. The norms, together with the resulting approximation order �, are arranged inTable 4.1.The experiment shows that the theoretical approximation order can be veri�ed inpractical calculations with realistic mesh sizes in the range of 116 and 132 , which corre-spond to 833 and 3201 nodes, respectively. For � > H0 the experimental convergence17



Figure 4.2: Fichera cornerorder is better than the theoretically predicted one. An explanation is that the solutionconsists of a singular and a regular part: u = us + ur; that means the approximationerror can be estimated byku� uh;W 1;2k � kus � ush;W 1;2k+ kur � urh;W 1;2k � C1h� + C2h;for � see Theorem 3.2. Only for su�ciently small h (depending on C1 and C2) willthe �rst part of this sum dominate. It was impossible to undertake further tests withsmaller mesh sizes due to the limitations of the computer which was used.Note that for the e�ect of the mesh grading to be observed (based upon varying �and a constant number of unknowns), the mesh size has to be su�ciently small. In ourexample, the error decreases when � is reduced, provided that h � 18 and � � 0:4. For� = 0:3 the error is larger than with � = 0:4 but because of the higher approximationorder one can assume that this e�ect disappears for smaller mesh sizes. Such e�ectshave also been observed in other tests, see [2, 5].4.2 Poisson equation in a three-dimensional domainWe consider the Poisson equation with a speci�c right hand side, together with homo-geneous Dirichlet boundary conditions:��u = r�3=2 �ln r1000��1 in 
;u = 0 on @
:The domain 
 := (�1; 1)3 n [0; 1]� [�1; 0]� [0; 1] (see Figure 4.2) has three edgeswith interior angle !0 = 32�, which meet in the center of coordinates; we denote by rthe distance to this point. Sometimes such a corner is called a Fichera corner and isnotoriously di�cult to treat. Note that the right-hand side is contained in L2(
), butnot in Lp(
) for p > 2.In order to determine the regularity of the solution, we consider �rst the cornersingularity and use Remark 2.3 and Example 2.2. The intersection of the domain withthe surface of the unit ball has the area 72�; a rotationally symmetric surface part withthe same size has the angle # � 138:6�, which yields the lower error estimate H0 � 0:93.On the other hand, the edge singularities are described by H0 = �!0 = 23 . That meansthe edge singularities dominate and determine the regularity of the solution.18
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Figure 4.3: Estimated error � in the energy norm for various mesh sizes and gradingsThis problem was solved �rst with ungraded meshes and mesh sizes hi = 1i (i =2; 3; : : : ; 24). Then re�ned meshes with grading parameters � = 0:8 and � = 0:5 wereconstructed using the method of successively dividing the elements until Assumption(e) on page 8 is ful�lled, see the description at the end of Subsection 3.1. Details of thealgorithm and the computer program used will be published in a forthcoming paper. |The energy of the �nite element error was estimated as in Subsection 4.1 with an errorestimator of residual type [7, 33]. The norms are given in form of a diagram in Figure4.3.As in the previous example we see that the theoretical approximation order can beveri�ed in the practical calculation. Note that the average mesh size �h is about �N7 ��1=3in this example, which means that �h = 124 corresponds to N � 105 nodes.In a detailed look at the curves in the diagram we observe a rather smooth gradientfor � = 1 and � = 0:8 but some exceptional points at the curve for � = 0:5. Theseappear when an additional (in comparison to the previous mesh) re�nement step isnecessary for generating the smallest elements; in these situations the number of nodesnearly doubles, but the error does not decrease by the same amount. The distributionof the nodes seems to be non-optimal in these exceptional cases. Nevertheless we canobserve an average approximation order h, even when we consider only these exceptionalpoints.Acknowledgement. This work was mainly done while the �rst and the second au-thors visited BICOM, the Brunel Institute of Computational Mathematics. The �rstauthor was partially supported by DFG (German Research Foundation), No. La 767-3/1,and by DAAD (German Academic Exchange Service), No. 517/009/511/3. The secondauthor was supported by the British Council. The calculations for the two-dimensional19
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