
Development of a shared-memory parallel 

solver for contact mechanics 

Henrik Bartsch, Nora Hagmeyer1 and Alexander Popp1

1Institute for Mathematics and Computer-Based Simulation, University of the Bundeswehr Munich, Germany

www.unibw.de/imcs henrik.bartsch@unibw.de

Motivation

Contact mechanics between rough surfaces represents an increasingly important 

field or research. The boundary element method (BEM) is applied to solve the 

frictionless contact problem between two linear elastic rough surfaces. For 

sufficient accuracy this already complex problem requires finely resolved 

underlying surface mashes. Parallel programming can aid in achieving higher 

accuracy and decreasing execution time. On one hand, parallel programming 

increases hardware usage and code efficiency, but on the other hand requires 

more know-how and time to test.

Parameters of parallel programming

Strong scaling results for the model problems

Strong scaling results for the BEM code

Isolating specific code parts for examination of parallelization parameters

To analyze how OpenMP – a parallel programming library - and its parameters effect 

the code efficiency, repetitive tasks have been isolated. The isolated tasks are: 

1. “Times1”: Filling elements of a matrix with values

2. “Times2”: Solving matrix-vector-product

3. “Times3”: Solving matrix-vector-product with indirect addressing

Cluster version: (generated on compute node with 2 Intel Xeon Gold 5118, each 

processor is capable of hyper-threading on up to 12 cores)

- sup5 scales much worse in comparison to the other two problem sizes, since 

sup5 is too small to make efficient use of parallel programming in this instance.

- Sup6 and sup7 share nearly the same speedup until they reach 8 threads.

- Sup7 scales better than sup6 does after 8 threads. This suggests that the drop-

off is due to the problem size.

Surface 5: 1024 nodes

(sup5)

Surface 6: 4096 nodes

(sup6)

Surface 7: 16000 nodes

(sup7)

Parameters of parallel programming

There are three distinguishable parameters within parallel programming to keep in 

mind:

The third parameter is the 

scheduling type.

Shown here are the three 

scheduling types for 

parallel loops and their 

respective effects on 

execution time and how the 

distribution of the workload 

across threads works.

On the left side, the 

visualizations show how the 

workload is distributed 

across threads 0 and 1 for 

a chunk size of 2.

On the right side, images 

present a visualization on 

how chunk sizes and 

thread amount affect 

execution time for the 

different scheduling types.

The first parameter is the thread 

amount. The thread amount 

determines, how many processes are 

allocated to perform a task.

The second parameter is the chunk 

size, which is considered to be the 

amount of iterations requested for each 

thread per cycle.

- Does not scale, overhead 

seems to be large in 

comparison to execution 

time.

- Kink after 6 threads 

suggests that hyper-

threading cannot be 

efficiently utilized using 

scheduling types static and 

guided.

“Dynamic” counteracts this 

negative effect caused by 

hyper-threading and 

increases speedup slightly.

- Almost perfect scaling for 

all schedules up to 6 

threads.

- Same falloff in speedup as 

before regarding „static“ 

and „guided“ for more than 

6 threads.

- Scales perfectly for 

scheduling types 

“dynamic” and “guided” up 

to 6 threads.

- Indirect addressing leads 

to differences in terms of 

execution time of the 

iterations. Cause of this 

are cache and memory 

latencies. Data suggests 

that “static” is not optimal 

for those circumstances.

Conditions of the strong scaling study

These scaling studies have been generated on a computer with an Intel Xeon CPU 

E5-1650. This processor provides 6 cores capable of utilizing hyper-threading 

technology, essentially doubling the available hardware thread amount, raising it to 

12 threads in total.

1
5

9

0

20

40

60

13579

1
1

1
3

1
5

1
7

T
h

re
a

d
 a

m
o

u
n

t

E
xe

c
u

ti
o

n
 t

im
e

 i
n

 

m
il
li
s
e

c
o

n
d

s

Chunk size

Times2 - Static - sup6

0-20 20-40 40-60

1
5

9

0
20
40
60

80

14
7

10
13

16

T
h

re
a

d
 a

m
o

u
n

t

E
xe

c
u

ti
o

n
 t

im
e

 i
n

 

m
il
li
s
e

c
o

n
d

s

Chunk size

Times2 - Dynamic - sup6

0-20 20-40 40-60 60-80

1
5

9

0

20

40

60

13579

1
1

1
3

1
5

1
7

T
h

re
a

d
 a

m
o

u
n

t

E
xe

c
u

ti
o

n
 t

im
e

 i
n

 

m
il
li
s
e

c
o

n
d

s

Chunk size

Times2 - Guided - sup6

0-20 20-40 40-60

0

2

4

6

8

10

1 4 8 16 24

S
p

e
e

d
u

p

Thread amount

Strong scaling - Cluster version

sup5 sup6 sup7


