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Personal electronic devices such as smartphones and smartwatches have become indispensable daily companions, collecting
a multitude of personal and sensitive data. As a result, they are of paramount importance in digital forensic examinations.
However, there is a lack of publicly available and ready-to-use digital forensic datasets, especially in mobile forensics. This
work presents a concept and an open-source proof-of-concept implementation, which simplifies and automates the creation
of mobile forensic datasets within the scope of the Android operating system. In contrast to previous approaches, which
populate the most common databases of an Android device, our concept is based on community-driven playbooks and makes
use of interaction with the actual smartphone GUI. Hence, we are able to generate coherent and realistic traces as they occur
in real-world human usage. Our proof-of-concept implementation is based on the standard Android emulation environment
and borrows tools from the user interface testing community. Our evaluation shows that our approach actually generates
realistic Android datasets. For instance, we can generate traces that cannot be simulated by gestures (e.g., changing the GPS
position or triggering incoming phone calls). Recording the actual data synthesis process allows users to either create and
share their own playbooks (i.e., the exact instructions for the data synthesis process rather than having to share the full image)
or reproduce Android images with different scenarios using playbooks previously created and shared by the community.
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1 Introduction
Over the last few decades, smartphones and wearables have become integral parts of our daily lives. People
interact with these devices by either actively using them or passively wearing them while performing everyday
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tasks. In each case, they collect various data that is stored either locally or in a remote cloud storage. This data
typically contains valuable forensic information that might be used as evidence in court.

The forensic community relies on high-quality training and test datasets to ensure that law enforcement officers
receive hands-on training and that digital forensics software and tools perform as expected. While real-world
datasets contain realistic traces of user interactions with these devices, researchers may be unable or not allowed
to obtain datasets from seized devices, as they may contain personal data, be protected by law, or be part of
ongoing investigations [10]. According to their survey, only 3.8% of the newly created datasets were published.
Therefore, the forensic community has created datasets from their own experiments and published them on
various websites such as Digital Corpora [2] or CFReDS from NIST [13]. However, Gonçalves et al. [9] and Göbel
et al. [6] discuss typical problems with these datasets, such as that they often significantly deviate from reality,
are of poor quality, lack labels (i.e., a ground truth), contain only a few traces, or are quickly outdated. In a recent
survey of published mobile forensic datasets, Gonçalves et al. [9] identified only 31 available datasets in the digital
forensics domain and argued that the dataset gap problem, which Garfinkel et al. [5] already pointed out in 2009,
still exists.

A mobile forensic dataset is usually a snapshot of the current state of a device, realized as a dump of its
internal memory, sometimes as a physical, sometimes as a logical backup. These images may contain various kinds
of data related to a device, system, and application-related files containing various user-created and modified
content such as chat messages, browser history, and geo-tagged files. The available data and information on
a mobile device depend on several factors. First, when interacting with a device, the user follows a specific
behavior with individual preferences and routines (e.g., selecting a specific messaging app from a range of
available apps). Second, using software tools to extract data from a device can lead to different extraction types
(e.g., required root access for specific extraction methods). Third, devices run on various operating systems with
brand and model-specific builds, which in turn may have different data structures, file systems, and security
mechanisms.

At first glance, criminal content is no different from non-criminal content. Only after closely analyzing the
exact content of a forensic image can a forensic investigator find the information relevant to a particular case. For
smartphone contents, the investigator may find multiple file types (e.g., pictures and databases) from different
applications (e.g., messaging, social media, banking), which in turn store other information (e.g., usage history,
login data, and temporary files). This makes it necessary to dynamically adapt to different cases to find relevant
information to answer a set of questions (e.g., where was the suspect at a particular time?) and is therefore not a
trivial task.

The creation of such forensically sound datasets is not trivial either. Therefore, various authors have developed
different tools in the past that facilitate the automatic generation of forensic datasets. Examples of recently
published works in this area include the data synthesis frameworks hystck [8], TraceGen [3], and ForTrace [7].
However, none of the available tools currently supports the automated creation of reasonably realistic mobile
content.

Contribution. The contribution of this article is as follows. We analyze existing approaches for the automated
generation of mobile device images. In addition, we explore suitable means for UI testing of smartphone apps that
will later be used to perform a fully interactive user simulation, particularly the scripted use of the smartphone GUI.
Next, we create a concept and implement a new framework for the automatic generation of Android smartphone
images. This includes interfaces to integrate our framework into existing data synthesis frameworks. To validate
the framework, we identify the presence and significance of the generated digital traces within the Android image
and compare them with a manually created image following the same storyline to ensure the correct functioning
of our image generator. Finally, we provide open-source access to pre-configured playbooks and the source code
of our framework via the following GitHub project: https://github.com/dasec/ForTrace/tree/android-synthesis-
framework.
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Article Outline. In Section 2, we discuss prominent data synthesis frameworks for both general desktop and
mobile operating systems. Furthermore, we explore relevant mobile data generation tools. Based on our find-
ings, we propose a methodology to create an image synthesizer to generate Android smartphone dumps in
Section 3 and subsequently explain in detail our Python-based implementation in Section 4. Next, we create
a test dataset to validate our methodology in Section 5. In addition, we use various dataset (generation) prop-
erties discussed in the literature to validate our framework and the generated images. Finally, we present the
current limitations of the chosen approach and possible future works in Section 6 and conclude our article in
Section 7.

2 Related Work
In this section, we review related work in the scope of mobile forensic dataset generation during the last decade
between 2013 and 2023. We distinguish between general data synthesis frameworks in the field of digital forensics
and data injection tools specifically designed for mobile devices (e.g., Android or iOS smartphones). Based on our
literature review, we note that there is no fully automated Android synthesis framework that generates realistic
traces that can be used in mobile forensics. We therefore extend our search to the Android testing community,
which provides several utility tools for creating test cases (in particular for GUI testing purposes).

2.1 Digital Forensic Dataset Synthesis Frameworks
The ForGe (Forensic Test Image Generator) was introduced in 2015 by Visti et al. [15]. ForGe provides a
UI and takes instructions in the form of database entries. In addition, the output contains images and information
sheets. Although the tool is still available on GitHub, it has not been further developed since 2015 and thus seems
no longer to be maintained. Furthermore, ForGe does not address mobile device images.

Another work in this area is the EviPlant framework by Scanlon et al. [14]. The framework uses a base image
as a starting point. The challenges or traces can then be downloaded in the form of evidence packages. This has
the advantage that large files do not have to be sent multiple times, which is particularly interesting for teaching
purposes. The evidence packet must only be injected into the base image and the investigation can be started.
However, no base images or injection traces are available for mobile devices.

In 2020, Göbel et al. [8] published hystck, a Python-based framework that can create network and hard
disk traces. The creation can be automated using Python scripts or YAML (YAML Ain’t Markup Language
https://yaml.org/) configuration files. Automated synthesis makes it possible to create a wide variety of traces
within a virtual machine with little effort, which can be distributed efficiently by defining the contents as changes
from a template image. However, it currently only supports traces synthesized on Windows-based systems.

Du et al. [3] developed the framework TraceGen written in Python to automatically generate forensic images.
They adopt the idea of taking a set of pre-defined user actions and injecting them into virtual disk images. This is
done by an emulator that translates high-level actions and simulates user behavior by performing (sub)-operations
inside a virtual machine, e.g., using an Internet browser or modifying files on a hard disk. All changes are stored
on a disk image and simultaneously logged in a separate file that serves as the ground truth. Although they offer
fully automated control over the emulator, their framework currently only supports emulation on Windows-based
systems. Furthermore, the source code is unfortunately not published.

To our knowledge, the most recent framework is the ForTrace framework, developed by Göbel et al. [7],
which builds upon the hystck framework [8]. The ForTrace framework supports the injection of traces through
the simulation of human-computer interactions, and according to the authors, this approach is intended to
create more realistic scenarios. Along with the resulting disk image, it also contains a log of the generated
events that serves as the ground truth. However, it currently does not support any mobile operating system
synthesis.
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2.2 Data Injection Tools for Mobile Devices
In our literature review, we did not find a complete data synthesis framework for Android devices, so we extended
our review to tools that can inject pre-processed data into (emulated) Android smartphones.

Delgado et al. [1] presented the FADE tool. It is a proof-of-concept to inject static traces in an Android-based
emulator using the Android Debug Bridge (ADB). The authors modify files and database entries in an Android
virtual machine to mimic user-created content. Although they show that it is feasible to manually inject some
traces that can be detected by the forensic toolkit, such as Autopsy, the tool provides limited support to inject
other app-related information or to automate the injection process. Further, it does not offer the ability to interact
with the Android UI.

Another injection tool in the context of mobile devices is AutoPoD-Mobile shown by Michel et al. [12]. It
is a proof-of-concept framework for generating Android datasets using ADB, APIs from selected apps, and a
Google account. As mentioned in the article, the tool only works on a few physical and meanwhile outdated
Android devices (e.g., Samsung A50, Huawei Mate 20 Lite). Similar to FADE [1], this framework can inject some
user-generated traces by automatically inserting a set of pre-defined content, for example, a set of pictures, a list
of calendar events, or messages. Although their framework is capable of injecting traces into various smartphone
models, it does not provide the ability to synthesize this content through automated interaction with the device’s
UI and thus does not create important artifacts within the Android OS that would typically occur when interacting
through the UI with the Android OS.

Both FADE [1] and AutoPoDMobile [12] populate devices by injecting information into an Android device by
either directly modifying files or using various APIs to mimic device usage. However, human interactions with
the device, particularly with its UI, are not addressed, and thus, potential digital traces are not covered. We argue
that synthesizing human interactions by creating appropriate events on the UI, e.g., by simulating touch events
on the smartphone, is similar to humans interacting with a device. This approach should produce more realistic
forensic traces inside the OS instead of simulating API calls or adapting the respective files.

2.3 Android Test Data Generation Tools
Since only the two data generation tools FADE and AutoPoD-Mobile were found in the field of mobile forensics,
we expanded our literature search to the Android testing community. App developers use a wide range of tools
and techniques to model and generate various test cases. In general, most techniques try to simulate all possible
states on the app- or system-wide levels and observe how inputs might influence an app or the system. These
might be used to find faulty behavior or security leaks in applications.

Two notable tools are the AndroidViewClient (AVC)1 and UI Automator.2 Both tools provide similar func-
tionalities in user-friendly environments for creating test scripts for emulated Android devices. Although they
provide similar functionalities, the AVC is a Python-based implementation, while the UI Automator is a Java
application integrated into Google’s Android Studio. Both mimic user inputs by interacting with the emulator or
executing pre-processed scripts. Among other functionalities, the scripts can invoke UI events on GUI elements
and thus create touch events similar to those that occur during real human interactions. In addition, the AVC
provides built-in functions to support Android’s UI Automator functions.

Although we recognize more recently published works in the field of test data synthesis and the Android
testing community, the current state of the art does not support the synthesis of realistic content as found on
typical real-world Android devices. While the testing community’s main focus is not on generating datasets, its
tools and techniques could still help create a framework to synthesize traces on an (emulated) device. Therefore,

1https://github.com/dtmilano/AndroidViewClient
2https://developer.android.com/training/testing/other-components/ui-automator
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Fig. 1. Structure and workflow of our proposed Android data synthesis framework.

we aim to develop a data synthesis framework that supports simulated user actions to evoke various events on an
emulated device and finally address the need for realistic synthetic Android smartphone images.

3 Concept and Methodology
In this section, we describe our goal to implement and evaluate a synthetic framework for realistic images of
Android devices utilizing tools commonly used in UI testing. We present a concept using the AVC test framework
that can replicate real human interactions and thus synthesize realistic app data for Android smartphones on an
emulated device. To better understand our data synthesis approach, Figure 1 illustrates our framework’s exact
structure and workflow. In the following, we will explain each component in detail.

Human interactions with a smartphone can be simplified down to a few basic actions. These include (1) pressing
elements on the device’s UI, for example, to write a message, take a picture, etc., (2) navigating through the OS
using various gestures such as touching, swiping, and long tapping, and (3) passively interacting with the device,
for example by wearing the device while walking and thus invoking different events from various device’s sensors.
By replicating these events using a synthetic framework, we can create artificial user input and thus digital
artifacts on the device without knowing the apps’ internal data structures or databases. In direct contrast to FADE
[1] and AutoPoD-Mobile [12], this approach is less prone to changes in non-UI software updates. Moreover, we
do not have to deal with the apps’ internal functions and data structures. Therefore, it is essential to understand
that we follow an entirely novel approach to synthesize data for digital forensic purposes by directly interacting
with the device’s UI in an automated way rather than simply populating the most common Android databases.

In the following subsections, we first demonstrate how to mimic the most essential Android user interactions, in
particular, executing gestures, pressing UI elements on the display, and executing special key events, e.g., pressing
the physical power button, that are bundled in our central component. The simulation of human interactions is
complemented by other relevant functions that affect smartphone usage, such as incoming calls, text messages,
and changes in GPS settings.
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3.1 Mimicking Gestures
In our context gestures mean all non-singular user input, i.e., that use one or multiple fingers (or other media)
that change its position. People use gestures to navigate on the smartphone, such as scrolling, changing views
between multiple pages, and much more. The use of synthetic gestures is one of the three key features of the
central component. In order to synthesize a specific gesture, we need to either track the actual path of the gesture
event (i.e., storing the actual coordinates of the finger(s)) or offer a set of pre-calculated gesture events in the
execution of the framework. The first approach may need constant adaptations of the original gesture, for example,
to adapt to different screen sizes and altering content. Thus, we decided to offer the most basic swipe gestures in
one direction only, i.e., moving the position of a finger towards the screen edge. In most cases, this simplification
might be sufficient to synthesize most UI inputs to navigate the Android system.

To realize this, we need to dynamically calculate the starting and ending position of the swipe gesture according
to the device’s screen size. The AVC provides methods to determine the properties of the current emulated device.
This serves as a basis for defining eight basic swipe gestures along both coordinate axes, i.e., top, down, left, and
right. In addition to the direction, we label “light” and “hard” swipes to create small and respective big swipe
variations differing in length. To execute a gesture, we would again use the AVC’s drag() method to simulate the
gesture.

3.2 Key Events
Since the release of Android 10 in 2019, users can use gestures for system navigation. That is, the common home,
return, and app overview buttons can be replaced by using gestures. To replicate those gestures more reliably and
faster, we decided to complement the gestures using key events.3 Key events are mapped to certain actions and
can be used for device interactions, device input, and the simulation of button events (e.g., home, volume button).

3.3 Replicating the Pressing of UI Elements
While gestures describe a user input that follows a specific path, we also have events that (almost) do not change
its position. Most commonly, this describes touch events to click on buttons and other UI elements. Similarly, as
described in the previous Section 3.1, we also suggest dynamically calculating the position of the UI element and
thus where the desired touch events should be evoked. To determine the interactable UI elements in a current
view, we use the AVC dump() function. This method uses Android’s UI Automator4 and parses its XML output,
resulting in a hierarchical view of all UI elements. We use the pre-processed hierarchical view of the displayed UI
elements as a starting point before processing the available information. This view depicts all UI elements with
their corresponding attributes, particularly an identifier (ID), a label, and a description, all of which are required
to trigger touch events on certain elements on the emulated device. Exemplified in Figure 2(a) and (b), we have
encircled most of the UI elements that the AVC processes and returns with its attributes so that we can further
process the given information. In Figure 3, we can see an excerpt of the attributes belonging to one of the framed
Google Chrome applications on the home screen from Figure 2(a).

Once we have processed the hierarchical view elements, we list every possible element with which the user
can interact. This enables identifying the desired element, either by a unique ID or by interpreting the contents
of the element’s attributes, e.g., a label containing ‘search places’ to browse through available conversations as
depicted in Figure 2(b). Consequently, the framework filters out an element based on its given attributes (such as
ID and label) rather than using X and Y coordinates, which improves the re-usability on different devices with
different screen sizes or build versions. Lastly, the identified element is executed using the AVC’s touch() method.

3https://developer.android.com/reference/android/view/KeyEvent
4https://developer.android.com/training/testing/other-components/ui-automator
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Fig. 2. Example of clickable UI elements on an Android home screen and in Google’s Messages app. The colored rectangles
depict the bounding boxes for the elements with which the user can interact.

Fig. 3. Example of the AVC’s dump() method showing all attributes for the Google Chrome shortcut.

3.4 Complementing the Central Component with External Features
In the previous sections, we discussed how user interactions can be reliably simulated using gestures, key events
and touch events. In addition, one of the main features of smartphones is that modern devices contain a variety of
sensors to measure incoming signals sent by the device’s surroundings. Most smartphones include a microphone
(audio signals), a gyroscope (motion signals), a GPS module (GPS satellite signals), and an antenna (networking
signals), among other sensors. In contrast to direct interactions on the UI (e.g., touch events), these indirect
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device-related events originate from external sources that the user cannot fully control, as they can be modified by
some noise signals of the device’s environment. For example, the GPS module converts multiple satellite signals
to pinpoint the exact geographical location but can be affected by noise, such as buildings and obstacles. Since
these features are crucial for a realistic synthetic framework, we need appropriate functions that complement
the central component. As external sources trigger these events, we call the addition to the central component
“external” features. Our prototype of the synthetic framework should support the simulation of the most basic
external features. These are incoming calls that can be declined or accepted, receiving and sending text messages
(SMS), and manipulating GPS coordinates. To implement the external features, we use additional tools supplied
with the Android Software Development Kit. For instance, using a telnet client,5 we can connect to an emulator
and send special emulator commands that allow us to influence external factors.

3.5 Scenario Creation and Simulation
Now that we have explained the main methods of the synthetic framework to simulate human behavior, we
demonstrate the creation of an actual synthesis scenario. As a result, we want to show how to create the so-called
playbook. The playbook contains a detailed description consisting of an ordered set of individual actions necessary
to recreate a scenario. An action can be a gesture, a simple UI click event, or an external feature. The information
within the playbook should be human-readable and adaptable as some information (e.g., the content of messages,
phone numbers of incoming calls, etc.) may be easily changed in the playbook. A significant advantage of our
approach emphasizes the exchange of community-driven playbooks that can be easily adapted to a customized
scenario. As a result, we chose to store our configuration files in the YAML format as depicted in Listing 1. The
indentation-sensitive YAML format can be exchanged quickly within the community, allowing us to store various
actions as key-value pairs.

1 Name: Test
2 Description: Test description
3 Gesture: SWIPE UP
4 Pressing UI Element: Google Chrome
5 External: CALL 1234

Listing 1. Abstract Example of a Playbook.

3.6 Device Platform
To improve the availability and reproducibility of forensic datasets, our framework design and structure focus
mainly on smartphone emulators, although the approach would also be applicable to physical, rooted devices. In
detail, we adapt for Google’s Android Virtual Device (AVD)6 Manager in the emulation of Android devices.
Although other emulators (e.g., Genymotion) can also be used as long as the used image supports a connection via
ADB and telnet, AVD is already included in Google’s Android Studio. The AVD Manager offers a list of previously
published Android versions and provides support for a wide range of virtual devices, models and builds. Emulated
devices enhance reproducibility and usability in contrast to physical devices. The AVD manager also supports
different Android versions containing Google Play services, versions supporting Google API usage, and versions
for the Android Open Source Project. Root access is necessary as some commands require higher privileges (e.g.,
using ADB to acquire a logical copy from the emulated device). However, there is no way to gain root access to
images that run Google Play services. Therefore, we use a build without those services enabled and without a
pre-installed Google Play Store. Although this may limit the availability of some services and apps, other app
stores with similar functions and apps are still available via the emulator and can be installed.

5https://developer.android.com/studio/run/emulator-console
6https://developer.android.com/studio/run/managing-avds
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3.7 Extraction of the Synthesized Data
To forensically analyze the resulting data after the data synthesis process, we need to extract the generated data
first. In most cases, this includes information stored in Android’s userdata partition, whose extraction using the
adb pull command requires root privileges. Only a logical extraction is possible for the userdata partition, as it
is protected by full disk or file-based encryption in modern Android versions.

4 Implementation
In this section, we describe howwe implemented the concepts from Section 3 to support several human interactions
included in our central component, i.e., the simulation of gesture events, key events, and touch events on UI
elements. We also describe howwe complement our framework with additional external features. Next, we describe
how we can create a scenario with a set of actions to generate abstract configuration files that can be shared with
others. Furthermore, we show how to generate forensic artifacts using previously created community-driven
playbooks that support a wide range of Android OS versions and variants. To enhance the framework’s usability,
we created a simple command-line interface (CLI) for control mechanisms and to read and create playbooks
easily.

4.1 Implementing Gestures
As mentioned in Section 3.1, we offer the user a pre-defined set of the most common swipe gestures. To calculate
the exact position required to perform a swipe gesture, we initially determine the display size of the emulated
device. After the device is connected to the framework via Viewclient.connectToDeviceOrExit(), We use the AVC’s
Viewclient.display() function to get the boundaries of the actual device size. The code Listing 2 illustrates the
calculation of the “soft” and “hard” left swipe gestures.

1 left_swipe_coordinates = (0, 0, 0, 0) # right to left
2 height = self.get_display_height()
3 width = self.get_display_width()
4 # x, y; top left coordinate is (0, 0)
5 mid_left = width * 0.2, height / 2
6 mid_right = width * 0.8, height / 2
7 mid_center = width / 2, height / 2
8 # Set coordinates
9 left_swipe_coordinates = (mid_right, mid_center)

10 left_swipe_long_coordinates = (mid_right, mid_left)

Listing 2. Example for Determine the Start and End Coordinates for the Normal and Long Left Swipe Gesture.

If the user decides to perform a gesture, we present the set of possible gestures to the user. In addition, each
entry is provided with a consecutive number. Such a gesture can be executed by stating the number of the gesture
to the framework using the CLI.

4.2 Implementing Key Events
Similar to swipe gestures, we offer key events to the user (as shown on Android for Developers7). The most
common key events are shown in Listing 3. While the aforementioned swipe gestures are mainly used for
(horizontal and vertical) scrolling through apps, key events can be used for reliable navigation through the system
using software-based or physical buttons.

7https://developer.android.com/reference/android/view/KeyEvent
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1 KEYCODE_HOME # Value 3 => adb shell input keyevent 3
2 KEYCODE_BACK # Value 4 => adb shell input keyevent 4
3 KEYCODE_VOLUME_UP # 24 => adb shell input keyevent 24
4 KEYCODE_VOLUME_DOWN # 25 => adb shell input keyevent 25

Listing 3. A Short List of the Most Common Key Events and the Resulting Command. The User Can Chose from All Key
Events.

4.3 Implementing Touch Events on UI Elements
To synthesize touch events on various UI elements, i.e., by pressing an interactive element visible on the display,
we use the AVC’s dump() and touch() method. While the dump() method lists all interactable UI elements and
their attributes, the touch() method simulates a touch event on the display, as previously described in Section 3.3.
The Listing 4 depicts a selected part of the view shown in Figure 2(b) created by the AVC’s dump() method and
post-processed by our framework. It shows a hierarchical view on all UI elements in the current view. Each node
is dynamically numbered with an ID and the class name it belongs to, e.g., ID 0 identifies the root node. However,
reloading the view in a more dynamic environment may change the order of the elements and thus the numbering.
Therefore, using the ID to identify the same element in subsequent actions may not be sufficient. In addition, the
dump provides the attributes associated with a node, particularly a non-unique app-specific ID ('_��).

1 ID: 0, CLASS: android.widget.FrameLayout [...]
2 .ID: 1, CLASS: androidx.drawerlayout.widget.DrawerLayout[...]
3 ..ID: 2, CLASS: android.view.ViewGroup [...]
4 ...ID: 3, CLASS: android.view.ViewGroup [...]
5 ....[...]
6 ...ID: 9, CLASS: android.view.ViewGroup [...]
7 ....ID: 10, CLASS: android.view.ViewGroup [...]
8 .....ID: 11, CLASS: android.view.ViewGroup [...]
9 ......ID: 12, CLASS: android.widget.EditText [...]

10 .......[...]
11 ......ID: 15, CLASS: android.support.v7.widget.RecyclerView
12 .......ID: 16, CLASS: android.view.ViewGroup
13 ........ID: 17, CLASS: android.widget.TextView, R_ID: com.google.android.apps.messaging:id/conversation_name, TEXT: 4321,

↩→ TAG: None, clickable: false, CONTENT_DESCRIPTION: None, com.google.android.apps.messaging
14 ........ID: 18, CLASS: android.widget.TextView, R_ID: com.google.android.apps.messaging:id/conversation_snippet, TEXT: Test

↩→ message, TAG: None, clickable: false, CONTENT_DESCRIPTION: None, com.google.android.apps.messaging
15 ........ID: 19, CLASS: android.widget.TextView, R_ID: com.google.android.apps.messaging:id/conversation_timestamp, TEXT: Tue,

↩→ TAG: None, clickable: false, CONTENT_DESCRIPTION: None, com.google.android.apps.messaging
16 .......ID: 20, CLASS: android.view.ViewGroup
17 ........ID: 21, CLASS: android.widget.TextView, R_ID: com.google.android.apps.messaging:id/conversation_name, TEXT: 1234,

↩→ TAG: None, clickable: false, CONTENT_DESCRIPTION: None, com.google.android.apps.messaging
18 ........ID: 22, CLASS: android.widget.TextView, R_ID: com.google.android.apps.messaging:id/conversation_snippet, TEXT: Test

↩→ message, TAG: None, clickable: false, CONTENT_DESCRIPTION: None, com.google.android.apps.messaging
19 ........ID: 23, CLASS: android.widget.TextView, R_ID: com.google.android.apps.messaging:id/conversation_timestamp, TEXT: Tue,

↩→ TAG: None, clickable: false, CONTENT_DESCRIPTION: None, com.google.android.apps.messaging
20 ........[...]

Listing 4. Excerpt of the Tree-Like Structure.

Although identification through the use of the app-specific ID works well for simple views, identification
can be challenging for views that list similar items. As depicted in Figure 2(b) we have two conversations that
contain similar UI elements. An excerpt of the associated dump of the hierarchical view is listed in Listing 4,
where the children of ID 16 relate to contact 4321 and ID 20 to contact 1234, respectively. The child’s attributes, in
particular, the IDs, do not differ for both contacts, e.g., the TextView class with id:/conversation_name holding
the contact’s name. Only by interpreting the attribute’s contents can we safely determine to which conversation
a UI element belongs, e.g., the contents of the TEXT: attribute from IDs 17 and 21. A similar problem arises in
the home screen view from Figure 2(a) where the Google Chrome application can be started by clicking either on
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one of the two icons: at the left and on the favorite app bar’s icon. Thus, we need to consider the context of the UI
elements to synthesize the correct touch input reliably. Therefore, we decided not only to match for attributes
but also to store the complete hierarchy of a single element to identify the element correctly. In the example
from Listing 4, we need to store the information as depicted in Listing 5 to simulate a touch event to open the
conversation for contact 1234. In the execution of the playbook, we can then compare the attributes of the given
UI element and its context, i.e., text, resource-id, class, package, and content description. While we can use this
method on any virtual device for the recording phase of our playbook, we are limited to similar devices during
the synthesis phase because the view may differ between different states of a device, thus not being identical.
Therefore, we recommend using a newly set-up device for the recording and the simulation.

1 android.view.ViewGroup
2 ID: 0, CLASS: android.widget.FrameLayout [...]
3 .[...]
4 .......ID: 20, CLASS: android.view.ViewGroup
5 ........ID: 21, CLASS: android.widget.TextView, R_ID: com.google.android.apps.messaging:id/conversation_name, TEXT: 1234,

↩→ TAG: None, clickable: false, CONTENT_DESCRIPTION: None, com.google.android.apps.messaging
6 ........ID: 22, CLASS: android.widget.TextView, R_ID: com.google.android.apps.messaging:id/conversation_snippet, TEXT: Test

↩→ message, TAG: None, clickable: false, CONTENT_DESCRIPTION: None, com.google.android.apps.messaging
7 ........ID: 23, CLASS: android.widget.TextView, R_ID: com.google.android.apps.messaging:id/conversation_timestamp, TEXT: Tue,

↩→ TAG: None, clickable: false, CONTENT_DESCRIPTION: None, com.google.android.apps.messaging
8 ........[...]

Listing 5. Information Stored When Pressing the Second Message.

4.4 Implementing Additional External Features
In our prototype, we already support some external features. That is, changing the GPS coordinates, initiating an
incoming call (i.e., accepting or rejecting the incoming call) and receiving an SMS message. In addition to the
actual action in the simulated case, these external features are also relevant for the generation of appropriate
background noises. In Listing 6, we can see the commands used and their purposes.

1 Change GPS coord.: geo fix {longitude} {latitude} {altitude}
2 Initiate incoming call: gsm call {number}
3 Accept incoming call: gsm accept {number}
4 Cancel call: gsm cancel {number}
5 Receive SMS: sms send {number} {message}

Listing 6. External Features to Complement the Central Component.

While these features can also be accessed via the Google’s AVD Manager’s GUI, it may not be suitable for
simulating complex scenarios. Thus, we initiate a telnet connection with the target device and send various
commands that can be found on the corresponding Android developer website.8 For example, the gsm command
simulates inbound phone calls and establishes and terminates data connections. The user can decide which
commands to execute by interacting with the tool’s CLI.

4.5 Recording a New Scenario
In the previous sections, we described the functions of the central component and its complementing external
features. The set of actions to execute a playbook, as proposed in Section 3.5, is stored in a configurable YAML file
that describes the steps to execute a customized scenario. With Algorithm 1, we demonstrate the general process
of recording and storing a scenario. To facilitate the recording process, we provide a CLI implementation to the
user. The user is guided through the recording by prompting the available set of actions.

8https://developer.android.com/studio/run/emulator-console
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Algorithm 1: Recording a New Scenario

Ensure: key event HOME inserted
scenario_name← user_input()
scenario_description← user_input()
while scenario_recording do

list_available_actions(ui_elem, gestures, external)
action← user_input
if action == ui_elem then

ui_elem_list← dump_curr_view_elements
list_all_ui_elements
selected_ui_elem← user_input(chosen_ui_elem)
if ui_elem requires user_input then

text← user_input(text)
press the corresponding ui_elem
insert text in ui_elem
press key event enter
store selected_ui_elem in playbook
store text in playbook

else
press the corresponding ui_elem
store selected_ui_elem in playbook

end if
else if action == gesture then

list possible gestures
selected_gesture← user_input(gesture)
execute selected_gesture
store selected_gesture in playbook

else if action == key_event then
list possible key events
selected_key_event← user_input(key event)
execute selected_key_event
store selected_key_event in playbook

else if action == external then
list possible externals
selected_external← user_input(external)
parameters← user_input()
execute selected_external
store selected_external in playbook
store parameters in playbook

end if
end while

To ensure a global starting point, we must enforce that each recording starts at the home screen by first evoking
the corresponding key event, i.e., the home button. Each action from the configuration file is then successively
executed according to its type: actions related to gestures, key events, UI elements, or external features. Each action
is incrementally numbered and subdivided by indenting the associated commands and additional information. For
instance, Listing 7 shows the contents of the playbook to simulate actions opening the Google Chrome application
(action number 0), then receiving a SMS message (action number 1), changing the current GPS position (action
number 2) and returning to the home screen (action number 3). For UI element-related actions, we first need to
identify the element by providing the associated parameters containing contextual information, as previously
stated in Section 4.3. Therefore, we need to store the complete contextual information under PARAMETERS:
for identifying the target element. Solely, the parameter in the line 28 containing TEXT_TO_INSERT: can be
customized to insert additional information, e.g., entering an HTML address. After identifying the target element,
the algorithm further checks for additional user input, e.g., a text field for inputting an HTML address. In this
case, the algorithm selects the text field, inserts the provided text, and finalizes it by executing the key event
for Enter. The intermediary steps and the element’s context information are stored in the playbook. In all other
cases, only the element’s context and the execution of a touch event are stored. For gesture events, the framework
provides a list of possible events through the CLI with the associated code. In this case, the playbook contains a
type describing the gesture, e.g., left swipe. The actual positional information is dynamically calculated during
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the simulation. Similar to the gesture, the user can decide to add a key event in the same manner by providing
the associated ID as described in Section 4.2. As for the recording of an external feature, the user can choose
between the selection mentioned in code Listing 6 by interacting with the CLI of the framework. Depending on
the selected feature, the user is required to insert additional information (GPS coordinates, phone number, etc.) to
be stored as parameters in the configuration file.

1 name: android-example
2 description: Open Google Chrome, receive SMS, change GPS data, return to home screen
3 0:
4 TYPE: VIEW
5 SUBTYPE: android.widget.TextView
6 PARAMETERS:
7 [...]
8 TEXT_TO_INSERT: None
9 1:

10 TYPE: EXTERNAL
11 SUBTYPE: SMS
12 PARAMETERS:
13 MESSAGE: '"Test message"'
14 NUMBER: '+123456789'
15 2:
16 TYPE: EXTERNAL
17 SUBTYPE: GEO
18 PARAMETERS:
19 LONGITUDE: '10'
20 LATITUDE: '20'
21 ALTITUDE: '30'
22 3:
23 TYPE: KEYEVENT
24 SUBTYPE: KEYCODE
25 PARAMETERS:
26 KEYCODE: 3 # Pressing the home button

Listing 7. Example Playbook That Opens Google Chrome, Receive SMS, Changes the GPS Position and Returns to Home
Screen.

4.6 Simulation of a Given Scenario Using a Playbook
We need to pass one or multiple playbooks to the framework to simulate a scenario. Each playbook consists of
one or more actions. As the configuration files are executed one after the other, both the sequence of actions
within a configuration file and the sequence of the configuration files themselves are important. For example, we
must first open a browser and download a file to be able to open the file manager and install the downloaded file.

Reproducing an image based on an existing playbook is simple and is illustrated in Algorithm 2. Depending on
the type of action, the framework either interacts with a UI element, performs one of the possible gestures, or
executes a key event or one of the external commands to complement the feature set of the framework.

4.7 Extracting the Synthesized Data
After finalizing the synthesis, the framework can create extractions of the userdata partition using ADB’s
adb shell. This tool enables us to use a Unix shell within a (emulated) device and is able to run various
commands. It allows the creation of a logical backup of the encrypted userdata partition by using adb shell
pull /path/to/partition/ /destination/path. Complete physical extraction of the userdata partition is not
possible due to file-based encryption.

5 Validation
In this section, we validate the framework in three steps. First, we compare the data synthesized with
our framework to manual interactions on a physical device. Second, we determine whether we can find any
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Algorithm 2: Simulation of a Scenario Using a Playbook

load playbook
insert :4~2>34 �$"�

while 2>=5 86DA0C8>=_5 8;4 ℎ0B 8C4< ;4 5 C do
02C8>= ← =4GC 8C4< 5 A>< 2>=5 86DA0C8>= 5 8;4

if 02C8>= C~?4 > 5 D8_��)�$# then
if subtype requires user_input then

text← stored input_text
click ui_elem
insert stored text
press keycode enter

end if
else

click ui_elem
end if
if 02C8>= C~?4 > 5 64BCDA4 then

?4A 5 >A< 64BCDA4

else if 02C8>= C~?4 > 5 :4~4E4=C then
4G42DC4 :4~4E4=C

else if 02C8>= C~?4 > 5 4GC4A=0; then
read parameters from configuration file
4G42DC4 4GC4A=0;

end if
end while
if extraction wanted then

extract userdata partition
end if

framework-specific traces on the emulated device when using the supported functions of the central component
and the external features. Both are covered in Section 5.2. Third, we validate the current state of our framework in
general against other synthesis approaches in the field using established properties in Section 5.3.

5.1 Test Scenario
To mimic a real user and determine the scope of functionality, we created a proof-of-concept scenario that
reflects a wide range of user interactions that can be expected when using the device in real life. We created a
full-day scenario consisting of the following actions: browsing websites, taking photos, sending e-mails, installing
applications, writing and receiving messages, making and receiving calls, using Google Maps for navigation,
using a third-party application for communication, and taking some notes. An excerpt from the corresponding
playbook can be seen in Listing 7. The emulated device running on Google’s latest API level 34, Android 14 is
reset before running a playbook. In addition, each app is launched once to skip any tutorial pop-ups that might
interfere with the synthesis process. Using the same procedure, we reset the physical device to factory settings
and launch each app to create a common base.

5.2 Comparison of the Two Test Datasets and Validation of the Functionality of the Framework
To compare the two generated images fairly, we mainly used the SANS Institute cheat sheets by Epifani [4] and
Mahalik et al. [11], as well as common forensic tools such as Autopsy, DB Browser for SQLite, and ExifTool. As
we can only extract a logical image due to Android’s protection mechanisms, we focus on the generated data of
the individual apps located in the userdata partition, which is mounted under /data. Table 1 shows the activities
performed in our test scenario described in Section 5.1. We also indicate where the corresponding artifacts are
located and whether the artifacts are presented just like on a physical device.

As we visited various websites on both devices, we took into account the browser activity, i.e., we analyzed the
associated databasesHistory and Cookies in Android and the files containing the tabs in /app_tabs/0/*, which allows
us to confirm the indistinguishability between the data from the manually operated device and the synthesized
content.
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Table 1. Individual Activities Performed in Our Test Scenario, Artifacts Generated in Each Case, and an Indication of
Whether the Generated Traces Met Our Expectations

Activity Most relevant analyzed artifacts and its location in /data Fulfilled
Browse websites data/com.android.chrome: 3

↩→ app_chrome/Default/History
↩→ app_chrome/Default/Cookies
↩→ app_tabs/0/*

Take photos media/0/Pictures/* (3)
Send e-mails data/com.google.android.gm: 3

↩→ databases/bigTopDataDB.<USER_ID>
↩→ databases/peopleCache_EMAILADDRESS_com.google_11.db

Install applications data/com.android.vending: (Ø)
↩→ databases/localappstate
↩→ data/app*
↩→ data/system/packages.list

Write and receive messages data/com.android.messaging: 3
↩→ databases/bungle_db
data/com.android.providers.telephony:
↩→ databases/mmssms.db

Make and receive calls data/com.android.providers.contacts: 3
↩→ databases/calllog.db
data/com.google.android.dialer:
↩→ databases/dialer

Navigation with Google Maps data/com.google.android.apps.maps: (3)
↩→ cache/image_manager_disk_cache
↩→ databases/gmm_storage.db
↩→ files/saved_directions.data.cs

Chatting using WhatsApp data/com.WhatsApp: 3
↩→ databases/media.db
↩→ databases/wa.db
↩→ files/*

Creating some notes data/com.google.android.keep: 3
↩→ databases/keep.db
↩→ shared_prefs/*

Legend: 3 = fulfilled, (3) = partially fulfilled, 7 = not fulfilled.

When analyzing the camera application, we noticed a difference compared to the real device. Although both
devices created a picture in the media/0/Pictures/* folder, it was limited to the picture’s content. While you can
take a picture of any object with a real device, the emulator uses a camera application specifically for the emulated
device that creates a random sample picture. The pre-installed camera application does not create any interesting
traces (e.g., fill databases, cache, etc.) in its home directory. So far, we cannot use another camera application on
the emulated device (e.g., Google’s default camera application) and produce traces with them. However, we can
use a workaround to at least upload an arbitrary picture using adb push /source/path /destination/path.

Next, we turn to the forensic traces of the Gmail app. Our analysis does not reveal differences between the two
devices, as similar traces are present on both the emulated and the physical device in com.google.android.gm, i.e.,
the bigTopDataDB.<USER_ID> and peopleCache_<EMAILADDRESS>_com.google_11.db.

Digital Threats: Research and Practice, Vol. 5, No. 3, Article 30. Publication date: October 2024.



30:16 • M. Demmel et al.

Due to the limitations of Android Studio’s emulated devices, we cannot initially use the Google Play Store.
However, we can either install Google Play Services manually or use third-party app stores such as APKMirror,
F-Droid, Aurora Store. In our approach, we used APKMirror9 to install applications successfully, but unfortunately
this only creates traces within the corresponding home directory com.apkmirror.helper.prod of the application
instead of the Google Play Stores com.android.vending.

Next, we analyzed the traces we created when writing and receiving SMS. We looked at the bungle_db and
mmssms.db and compared their content for both devices. We found no differences between the two images.

We also looked at the incoming and outgoing calls in com.android.providers.contacts. Among other files, we
examined the calllog.db and could not find any differences, as we were able to find all initiated and incoming calls
in the files mentioned.

To simulate navigation, we used Google Maps to start navigation and update GPS coordinates. In this way, we
were able to create similar traces to real navigation. However, we noticed less data in the gmm_storage_table
table of gmm_storage.db in the synthesized image, probably due to the different frequency of position updates.

Finally, we analyzed the communication viaWhatsApp and the creation of notes with Google Keep. We examined
the most common databases and files of WhatsApp by analyzing the media.db, wa.db and the data located in
files/*, which resulted in no difference between devices. By examining the keep.db of Google Keep and the data in
the shared_prefs folder, we can confirm the indistinguishability of this app-generated data, too.

After comparing the app-generated data on both images, we also looked for traces created by the synthetic
framework itself. We want to discover if we are creating other unwanted traces that do not make sense. On the
bright side, we could only find limited traces related to adb on which the complete synthesis approach is based,
as some of the key indicators for an adb connection were missing in /data/adbroot, /data/misc/recovery/last_log.
We believe this might be because the emulated device in Android Studio is designed to connect via adb.

5.3 General Framework Validation with Given Properties
With the available activities listed in Table 1, we can already mimic a significant part of the real user behavior on
Android smartphones. To validate data synthesis frameworks in this area in general, Göbel et al. [7] proposed
a set of properties that such a framework and the resulting datasets should meet to increase acceptance in the
forensic community. Table 2 lists the properties and indicates whether our approach meets them. Each property
is explained in more detail below.
Free and Open Source Availability. This property is given because our framework and its publicly available

source code are explicitly intended for the community to share playbooks for mobile forensic data synthesis.
Holistic Quality. As we currently cannot extract the emulator’s RAM and network capture, we do not yet fulfill

this property. However, this feature can be added in the future.
RealisticQuality. By synthesizing an image using a playbook and comparing the outcome with a similar manual

data creation approach, we have shown that we can create indistinguishable traces for certain activities.
Templates. Templates are provided by the framework in the form of playbooks. These are used to (1) create dy-

namic and configurable scenarios and (2) in the form of pre-configured playbooks to generate realistic background
noise.
Customization. Without having to re-record an entire scenario, the user can freely edit, delete, or add details

for the execution of various external features and gestures (e.g., GPS coordinates, top swipe, etc.). However, for
pressing UI elements we can still improve our current approach by outsourcing recurring parts from the playbook.
Uniqueness. Currently, the framework does not support a function to generate completely random images,

resulting in a deterministic behavior. However, during the synthesis process, the user can choose between different
pre-defined playbooks (e.g., to initiate multiple calls, browse different websites, etc.) to be executed. This can be

9https://www.apkmirror.com
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Table 2. Reviewing the Properties the
Community Expects from a Data Synthesis

Framework

Property Fulfilled
Free and open-source availability 3
Holistic quality 7
Realistic quality (3)
Templates 3
Customization (3)
Uniqueness (3)
Ground truth 3
Usability (3)
Timeliness 3
Activity 3

Legend: 3 = fulfilled, (3) = partially fulfilled, 7 = not
fulfilled.

used to generate background noise. However, the order of execution must be considered. Further ideas on how
this can be improved are given in Section 6.

Ground Truth. A playbook can not only be used to synthesize data with the framework but can also serve as a
basis for the underlying ground truth since every action executed during a scenario is described in the respective
YAML configuration file. However, to get a better understanding of the exact execution time of each action,
we also use a separate ground truth file that contains both the action itself from the configuration file and the
execution time. In addition, we plan to integrate relevant triggered events on the emulated Android device that
are logged by Android’s logcatmonkey10 circular buffers for log messages.
Usability. Currently, interaction with the prototype can be done via the framework’s CLI. Although the

interaction is straightforward, selecting the desired UI element can be difficult occasionally (e.g., when browsing
websites with a lot of dynamic content).

Timeliness. By supporting AVD Manager, we can synthesize content for a wide range of devices with different
builds and OS versions. As AVD Manager is highly customizable, data synthesis should also be possible on newer
devices.
Activity. We support different Android OS versions and emulated devices right from the start, which enables

the exchange of playbooks in the community. In addition, the framework can be easily maintained in the future
due to its open-source policy.

In summary, as shown in Table 1, our proof-of-concept already synthesizes various activities. Moreover, we
fulfill most of the key properties of a data synthesis framework by generating indistinguishable traces in certain
areas within a community-driven project.

6 Limitations and Future Work
Althoughwe could createmany indistinguishable traceswith our framework, we still encountered some limitations,
so we could not fulfill all the properties mentioned in Table 2. One limitation is that we cannot create retrospective
data, as altering the emulator’s system time can lead to undesired behavior in some apps (e.g., WhatsApp, outdated
certificates, websites, etc.).

Sincewe rely on a real-timeGUI-based approach based on simulated human interactionswhen using community-
shared playbooks, the framework must ensure that the target device has a similar environment to the original

10http://developer.android.com/tools/help/logcat.html
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setting in which the playbook was recorded (i.e., similar build version, pre-installed applications required for the
scenario, same shortcuts on the home screen). In general, the framework is more resistant to changes. Especially
background changes (e.g., databases) are not relevant to our framework. While our approach can handle UI-
elements rotation (e.g., landscape vs. portrait mode), it cannot operate with removed or newly added UI elements.
However, it can be adapted by creating a new recording of the playbook. For future work, we plan to bundle
all pre-requisites to the configuration file to customize the target device automatically, pre-install all required
applications, and initially start applications to skip possible tutorials. Additionally, we can use Google’s monkey11
to start applications regardless of their location on the device’s screen, resulting in a more reliable behavior of the
framework, and thus skipping initial startups containing potential tutorial pop-ups.

Furthermore, some limitations exist due to Google’s protection mechanisms, such as a missing Android
production image that includes the Google Play Store. Even if alternative app stores can mitigate the impact of
the missing Google Play Store, we will never be able to produce the same traces as an image containing these
services.

Since the key for file-based encryption in Android is part of the memory contents, acquiring the physical image
on most modern devices (even with root access) is not easy. Since we could not examine the entire physical image,
additional traces of the data synthesis process within the OS (e.g., traces in some logging files, metadata, file
system, user credentials, etc.) may have been overlooked.

Although we may be able to generate forensic traces on multiple devices, the current approach does not
automatically synchronize multiple devices, e.g., sending messages between two instances of emulated devices.

Another improvement would be to make the emulator’s memory and network capture available to the user.
Although we are able to synthesize near-realistic data, we still need to bypass some of the emulated device’s natural
limitations, like using the camera and the GPS-related functions. Even though playbooks are fully customizable,
we intend to improve them further by minimizing non-editable overhead and thus making them more feasible. The
main focus of this framework was to record and execute community-driven playbooks with known information.
In real device usage, we find additional background noise that complements any case-relevant information.
The monkey tool may be used to create random touch events while navigating websites or using apps. As the
monkey tool cannot create meaningful content, future work should also consider synthesizing randomized realistic
background noise, e.g., while navigating websites or generating GPS tracks for navigation apps, to create more
sophisticated scenarios with unique content.

As for ground truth data, the Android command logcat, which reads several circular buffers for log messages
and can also be executed in the ADB, can be used to display all events in the Android operating system in real-time.
To determine if a triggered synthesis instruction was executed in the Android system, we plan to integrate logcat
to check if everything worked and to integrate relevant feedback of the command into the ground truth file.

Last but not least, integrating our approach into existing data synthesis frameworks such as ForTrace [7]
would be conceivable to enable synthesis on different platforms.

7 Conclusion
We conclude that our framework can generate traces for most everyday activities with an Android smartphone,
similar to traces from real-world device usage. Due to our proof-of-concept scenario, we demonstrated the
potential of our data synthesis framework in general, the automatic generation of traces using playbooks, and
their indistinguishability for most cases. We believe the novel approach of simulating human interactions rather
than populating the most common databases and files will generate more realistic forensic traces. Although
we have shown that the general approach works and that data synthesis using our central component and its

11https://developer.android.com/studio/test/other-testing-tools/monkey
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complementary external features can be used to synthesize realistic app data, the framework is still limited in
certain cases, e.g., using the emulator’s built-in camera app.

A more abstract validation of the framework led to several future working tasks, the most crucial part of which
was the ability to generate background noise more easily. Several workarounds were discussed to overcome an
emulated device’s natural limitations. In trying to fulfill the outstanding properties, our goal is to integrate our
approach into a data synthesis framework such as ForTrace [7], providing the community with a synthesis tool
with a broader scope. Moreover, we believe that our and similar approaches will play an essential role in closing
the dataset gap in mobile forensic datasets previously identified by [9, 10].
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