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Abstract. Digital forensics and anti-forensics are essential to security
because they provide vital information to institute preventive and re-
active measures. Diverse and realistic datasets that reflect anti-forensic
measures are needed to validate digital forensic tools and advance digi-
tal forensics education and research. However, datasets are increasingly
created in a synthetic manner due to privacy and legal constraints.

The work described in this chapter contributes to improving the dig-
ital forensic process by assessing anti-forensic measures at the filesys-
tem level and providing a means for synthesizing datasets containing
anti-forensic artifacts. Specifically, it provides an in-depth analysis of
anti-forensic data hiding techniques in the evolving Linux-based B-tree
filesystem (Btrfs). Also, it presents a methodology for generating anti-
forensic traces at the filesystem level in a post mortem storage device
dataset. The methodology links the ForTrace data synthesis framework
and fishy anti-forensic data hiding framework. A data synthesis tool is
developed for generating anti-forensic data hiding traces for three com-
mon filesystems, NTFS, ext4 and Btrfs, and providing essential data
synthesis functionality to simulate the expected behavior of the opera-
ting system. Additionally, a validation model comprising three complex-
ity levels is presented for assessing the implemented anti-forensic data
hiding techniques. Overall, the research provides a powerful approach for
generating datasets that reflect anti-forensic artifacts potentially used by
attackers.

Keywords: Data Synthesis - Data Generation - B-Tree Filesystem -
Filesystem Forensics - Anti-Forensics - Data Hiding

1 Introduction

The increased reliance on Internet-connected devices and traditional computers
in personal and business environments has led to significant increases in attack
vectors, attacks and potential victims. Forensic analyses of attacked and ma-
nipulated systems are vital to implementing mitigations that minimize damage,
attribute attacks and institute proactive measures to prevent future attacks.
Education and research in digital forensics are therefore of high importance.



2 Gobel et al.

A key component for digital forensic education and research is the availability
of diverse forensically-relevant data [30]. However, real data is often outdated,
incomplete, unrealistic and/or not publicly accessible and, most importantly,
often has missing labels [2, 38]. Collecting and curating new and complete real-
world datasets, especially for law enforcement purposes, is often not possible
due to data protection laws [16]. To bypass privacy laws and other constraints
on real-world data collection, several attempts have been made to generate syn-
thetic forensic datasets [6, 8,14, 15]. In particular, efforts seek to facilitate data
synthesis by simulating user interactions because manual data synthesis involves
significant effort [8, 14].

An accurate understanding of anti-forensic measures is important for training
digital forensic practitioners and developing high-functionality forensic tools.
Anti-forensic methods are designed to obscure, destroy and/or mislead digital
forensic investigations [10,17]. A recent taxonomy by Conlan et al. [7] starts
with the four original anti-forensic categories (data hiding, artifact wiping, trail
obfuscation and attacks against computer forensic processes and tools) [32] and
augments them with additional sub-categories of anti-forensic behavior. This
work focuses on data hiding, one of the largest anti-forensic fields because it
encompasses many types of manipulations with different levels of complexity [7,
24]. However, most data hiding algorithms and tools are often inaccessible due
to missing source code and documentation or are focused on specific filesystems
or data hiding techniques.

A promising approach is to deploy and maintain a modular and extensi-
ble framework capable of manipulating multiple filesystems, including a variety
of data hiding techniques. Therefore, the work described in this chapter fo-
cuses on manipulating filesystem structures to hide data. Data hiding methods
that leverage filesystem vulnerabilities attempt to obfuscate data using reserved,
unchecked or unused parts of a filesystem without impairing filesystem function-
ality [3]. Sometimes, even data structures ordinarily used by a filesystem are
abused to make it difficult to detect and reconstruct the hidden data. The goal
is to develop an understanding of the extent to which attackers can conceal
traces at the filesystem level.

This chapter provides an in-depth analysis of anti-forensic data hiding tech-
niques in the evolving Linux-based B-tree filesystem (Btrfs). It presents a method-
ology for generating anti-forensic traces at the filesystem level by leveraging the
ForTrace data synthesis framework and fishy anti-forensic data hiding frame-
work. A data synthesis tool is developed for generating anti-forensic data hiding
traces in three common filesystems, NTFS, ext4 and Btrfs, and providing es-
sential data synthesis functionality to simulate the expected behavior of the
operating system. Additionally, a validation model comprising three complex-
ity levels, basic, specialist and white box levels, is presented for assessing the
implemented anti-forensic data hiding techniques.
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2 Related Work

This section discusses related work on anti-forensic dataset generation with a
focus on data hiding and data synthesis tools.

2.1 Data Hiding Tools

Using filesystem structures to hide data is not a new idea. StegFS, a filesystem
that employed steganographic channels to hide data, was introduced in 2000 [25].
In 2005, Eckstein and Jahnke [9] identified several methods for hiding data.
Several early anti-forensic tools such as FragFS, MAFIA, bmap and RuneFS are
either no longer accessible or poorly documented and only accessible via third-
party publications [23].

Huebner et al. [20] have described methods for hiding data in NTFS filesystem
structures. Berghel et al. [3] have investigated NTFS and Linux-based filesys-
tems for potential hiding places. Gobel and Baier [12] and Neuner et al. [28]
have discussed the data hiding potential of timestamps (especially nanosecond
timestamps) in the ext4 and NTFS filesystems, respectively. Heeger et al. [18]
have developed the exHide tool that implements multiple methods for hiding
data in exFAT filesystem structures.

Abduhalil et al. [1] proposed a somewhat different variant of data hiding.
Specifically, they duplicated files in NTFS using index entries. After deleting the
files, the duplicate files remained in the filesystem.

Other researchers have analyzed the capabilities and vulnerabilities of Btrfs.
Bhat and Wani [4] and Juch [22] partially base their analyses of Btrfs on the
work of Rodeh et al. [31] and mention potential vulnerabilities and features of
Btrfs. Wani et al. [37] provide an overview of potential data hiding methods
for Btrfs. Gehrke [11] has studied Btrfs timestamps as a forensically-relevant
structure. Schneider et al. [34] have shown that entire filesystems can be hidden
in Btrfs.

2.2 Data Synthesis Tools

The early data synthesis tool Forensig? [26,27] generates filesystem images by
simulating user interactions via Python scripts. The EviPlant [33] framework is
used to create forensically-relevant datasets. It produces a base system with a
set amount of potential actions to create forensic artifacts. The differences be-
tween the base and manipulated systems are combined into an evidence package.
The evidence package is then applied to the base system to create a forensically-
relevant dataset. The VMPOP data synthesis framework employs virtual ma-
chines [29], which it populates with forensically-relevant artifacts by scripting
interactions with the virtual machine interfaces.

The Python-based hystck framework [15] generates network and hard drive
traces automatically using Python scripts or via YAML configuration files. Au-
tomated synthesis makes it possible to create a variety of traces with little effort
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in virtual machines. In parallel to the synthesis process, a log file is created that
contains and retains the ground truth of a scenario.

TraceGen [8] emulates user interactions to synthesize forensic artifacts. It
employs scripts running on a virtual machine as well as scripts interacting with
the virtual machine as in the case of VMPOP. Unfortunately, the source code of
the TraceGen framework is not publicly available.

The Fade tool [6] synthesizes forensically-relevant Android device images.
Specifically, it uses Android emulators to create forensic artifacts. Unfortunately,
the Fade source code is also not available.

ForGeOSI (github. com/maxfragg/ForGe0SI)and ForGen (github.com/Jjk422/
ForGen) are tools that also generate forensically-relevant images. ForGeOSI acts
as a wrapper for the Python virtualization environment pyvbox and uses the con-
nection to synthesize data whereas ForGen uses FTK Imager and VirtualBox to
generate images.

Although there is consensus in the digital forensics community on the im-
portance of synthetic datasets [2, 16, 38|, combining a data synthesis approach
with forensically-relevant, anti-forensic techniques is relatively uncommon. This
is curious because the resulting images would be good candidates for testing
forensic tools and use in educational/training environments. Only the ForGe
tool [35] is able to create NTFS images and enable data hiding in file slack or
via steganographic channels. However, ForGe has not been updated since 2015.

3 Data Hiding in Btrfs

Btrfs is a filesystem that is gaining importance in Linux systems [5]. The origin
of the acronym remains open; one is its B-tree directory representation whereas
another is that it is simply a better filesystem. The following sections describe
parsing Btrfs to find data structures that could hide data and discuss data hiding
in Btrfs data structures.

3.1 Parsing Btrfs

As in the case of modern filesystems, it is necessary to find and understand the
basic filesystem data structure of a Btrfs partition, i.e., superblock, to identify
additional relevant filesystem structures.

Figure 1 presents the steps involved in parsing a Btrfs filesystem to find
data structures that could be used to hide data. One component of interest
is the filesystem interface that recognizes the filesystem and helps locate and
interpret all the relevant filesystem structures. The second component, comprises
two chosen data hiding techniques, timestamp (nanoseconds) data hiding and
file slack data hiding. These techniques are responsible for hiding, reading and
removing hidden data as well as creating metadata objects and computing the
checksums of filesystem structures changed by hiding or deleting data.

— Step 0: The filesystem of interest has to be identified as an instance of Btrfs.
The filesystem type is checked by finding the expected superblock location
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Fig. 1. Parsing Btrfs filesystem to find data structures for data hiding.

at offset 64 KiB in the partition and validating the superblock by checking
its magic signature string _BHRfS_M at offset 0x40 of the superblock, i.e., at
offset 0x10040 of the partition [5].

— Step 1: The superblock contains essential information about the filesystem,
such as the size of the allocation units (blocks) and nodes that must be
known in order to work with the filesystem. This is why the rest of the
superblock is parsed. The chunk tree is an important data structure that is
identified during this step. Btrfs mainly uses logical addresses and the chunk
tree is used to translate the logical addresses to their physical addresses to
access data structures. During Step 1, the logical address of the chunk tree
at offset 0x58 of the Btrfs superblock is extracted.

POST http://android.clients.google.airpush.com/login
if logical_adr >= key_variable
AND logical_adr < key_variable + chunk_size:
physical_adr = stripe_adr

+ (logical_adr-key_variable)

B W N =

Fig. 2. Pseudocode for the addressing process.

— Step 2: The chunk tree physical address is computed from its logical address
and a partial copy of the chunk tree, which is stored at offset 0x32B of the
superblock. Figure 2 shows the pseudocode that translates logical addresses
to physical addresses.

— Step 3: The logical address of the root tree is read from offset 0x50 of
the superblock. The root tree is important because it contains the logical
addresses of the entry points of all the other trees in Btrfs [19].
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Table 1. Data fields of Btrfs inodes for hiding data [5].

Offset Size Description

(Bytes)
0x00 8 Inode generation
0x70 8 Access timestamp
0x78 4 Access timestamp (nanoseconds)
0x7c 8 Change timestamp
0x84 4 Change timestamp (nanoseconds)
0x90 4 Modified timestamp (nanoseconds)
0x9c 4 Inode creation timestamp (nanoseconds)

— Step 4: Using the chunk tree located in Step 2, the logical address of the
root tree is converted to its corresponding physical address, providing access
to the root tree.

— Step 5: The root tree is analyzed and the logical addresses of all the other
relevant trees are extracted.

— Step 6: As in Step 4, the physical addresses of the trees can be computed
as needed. At this point, access is available to all the relevant Btrfs data
structures.

3.2 Btrfs Data Hiding Techniques

This section analyzes the Btrfs filesystem data structures that can be leveraged
to hide data. It begins with classic locations such as timestamps and slack areas
and finally examines Btrfs-specific locations.

Btrfs Timestamp Hiding Technique. Inodes in Linux-based filesystems are
the data structures that store metadata of filesystem objects such as directories
and files. Table 1 shows the important data fields of Btrfs inodes for hiding data.

While the fine-grained structure of a Btrfs inode differs from the specifica-
tions of other filesystems, there are some similarities. A similarity with the ext4
filesystem is the presence of nanosecond timestamps. Unlike ext4 and APFS
timestamps, which only allow 30 bits of the entire timestamp to be used to en-
sure the integrity of the rest of the timestamp [12], the Btrfs variant of the hiding
technique can use the entire four-byte sub-second timestamp portion due to the
separation of the timestamp parts shown in Table 1. However, manipulating the
eight-byte main timestamp should be avoided because a simple filesystem check
would detect a broken timestamp [11].

Figure 3 shows the workflow of the write function Btrfs timestamp hiding
technique as implemented in the fishy anti-forensic framework. The filesystem
is parsed as explained in Figure 1 to create a list of inode offsets. Additionally,
the data input stream, whether from a file or the console, is read. For every
entry in the list of inode addresses, 16 bytes of the input stream are read. If
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Fig. 3. Btrfs timestamp hiding technique workflow.

the list of inode addresses is empty, but the input stream has not yet ended,
the process terminates due to the lack of hiding space. After writing data to the
four timestamps of an inode, the new checksum corresponding to the inode is
computed and replaced.

Btrfs File Slack Hiding Technique. A slack space is created when more
space is allocated to an object than is needed. Different types of slack spaces
arise in filesystems, for instance, between the end of the file content and its
allocated space. Because the slack space does not store content, it may be used
to hide data.

The workflow of the write function of the Btrfs file slack hiding technique is
similar to that of the Btrfs timestamp hiding technique (Figure 3). The filesystem
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Fig. 4. Computation of Btrfs file slack space.

is parsed to create lists of extent and inode offsets. The lists are then used to find
slack areas. If the lists are empty, but the input stream of data continues, the
process terminates. Unlike the timestamp hiding technique, the potential hiding
space existing in file slack space is more difficult to compute. The reason is that
while timestamps offer a fixed amount of hiding space, file slack space is volatile
and therefore has variable size.

Figure 4 illustrates the computation of Btrfs file slack space. The extent and
inode structures tied to a file are required. The extent specifies the size of a file
in terms of the number of allocated filesystem units (blocks). For example, the
file in Figure 4 allocates five filesystem blocks of typical size 4 KiB = 4,096 bytes.
Thus, the extent shows a file size of 5 x 4 KiB = 20 KiB = 20,480 bytes. However,
as indicated by the respective inode, the actual file size may be any number of
bytes between 16,385 and 20,480 bytes. The file slack size is simply the difference
between 20,480 and 16,385 bytes. Similarly, the offset of the file slack location is
computed by adding the file size found in the inode to the physical address of
the file. The logical file address found in the inode is computed as described in
Figure 2.

An additional challenge compared with timestamp-based hiding is updating
the checksums in different Btrfs filesystem structures. First, the file content
checksum in the checksum tree has to be recomputed and replaced. The entry is
found using the starting position of file data located in the extent. Additionally,
the file data checksum is contained in a node, similar to a node that contains
multiple inodes. Therefore, after recomputing a file data checksum, the checksum
of the corresponding node has to be computed and replaced as well.

Additional Btrfs Hiding Techniques. Ahead of every superblock in the
filesystem is a 64 KiB unused space. This space is not traditional slack space, but
it can be used in a similar manner. Even better, data hiding does not present the
challenges posed by slack space hiding because the unused space never changes.
However, the data hiding is easily detected. This is because of the limited number
of superblocks in a filesystem and manual investigations commonly performed
on important structures such as superblocks would detect the data hiding. In
any case, since the area ahead of the superblock is usually empty, it could be
paired with another hiding space [37].

Btrfs node structures also provide space for hiding data. Both types of nodes,
internal nodes and leaf nodes, have default allocation sizes of 16 KiB and con-
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tain slack areas too. Internal nodes, shown in Figure 5, often only fill the first
1,000 bytes of the nodes to locate the node headers and the key pointers to child
nodes, leaving up to 150,00 bytes of slack area if the node sizes are set to the
default size of 16 KiB.
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Fig. 6. Leaf node slack area.

Leaf nodes usually have smaller slack areas than internal nodes because they
contain filesystem metadata. While the internal node slack is always located at
the end of a node, the leaf node slack corresponds to the space between the node
item metadata and the actual node item data (Figure 6).

The storage capacity of node-based hiding techniques increases with filesys-
tem size — in depth (more files) as well as in width (more volumes) — because
both options scale with the amount of metadata and, therefore, the number of
nodes [36].

4 Dataset Generation with Anti-Forensic Traces

This section describes how anti-forensic data hiding practices are integrated in a
data synthesis framework. The goal is to provide an easy-to-use method for gen-
erating datasets that contain hidden forensic traces and assessing the extent to
which data hiding can actually be detected by forensic tools and digital forensic
practitioners. The section describes the workflow and capabilities of the fishy
filesystem anti-forensics framework [13] and the ForTracedata synthesis frame-
work [14]. Following this, insights are provided into Btrfs data hiding techniques
and the implementation of the interface between the two frameworks.
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Fig. 7. fishy framework architecture.

4.1 fishy Framework

fishy [13] is a modular open-source framework that enables users to hide, read
and delete data using reserved areas and other vulnerabilities in various filesys-
tems. The framework was selected as the data hiding component for the data
synthesis environment for several reasons. First, fishy is not restricted to specific
anti-forensic methods or filesystems. In particular, the tool provides wrappers
for common filesystems and also enables existing anti-forensic modules to be ex-
tended and new modules to be added (e.g., new filesystems and new hiding tech-
niques). The framework is comprehensively documented and still maintained.
Additionally, all the data hiding techniques offered by the framework have sim-
ilar structures and are, therefore, easy to use. Also, the modular architecture of
the framework facilitates the creation of a uniform interface.

Figure 7 shows a simplified version of the fishy framework architecture. The
framework has three principal components that regulate the workflow:

— Command Line Interface: The command line interface parses user inputs
and determines the target image, chosen techniques, methods and metadata
options. As described later, when fishy is integrated with ForTrace, the
command line interface is skipped because the new interface directly calls
the second component, the hiding technique wrappers.

— Hiding Technique Wrappers: A wrapper exists for every implemented
data hiding technique. The wrappers employ filesystem detectors to deter-
mine the implementations of the hiding techniques that need to be called.
The wrappers also handle organizational tasks such as reading metadata files
if they are needed by the called functions. Additionally, the wrappers handle
input and output data streams.
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— Hiding Techniques: Data hiding techniques are implemented in the corre-
sponding filesystem modules. The filesystem modules parse filesystem struc-
tures and offer the requested information about them to the actual tech-
niques to be used. Every hiding technique has three basic functions: write
that inserts data to be hidden (Figure 3), read that recovers hidden data
and clear that wipes hidden data using zero bytes.

Additional functions can be implemented. Most modules also provide an
info function that displays the corresponding filesystem and data hiding
technique information.

Before the integration of the new Btrfs module, fishy had modules for the
NTFS, extd, FAT32, exFAT and APF'S filesystems. Note that the FAT32, exFAT
and APFS modules are not included in the data synthesis integration effort
described in this chapter.

— NTFS Module: This module parses the common NTFS Windows filesys-
tem. The NTFS module has four implemented hiding techniques. Two of the
techniques, badcluster and addcluster, manipulate filesystem cluster man-
agement. The third technique computes the offsets and sizes of slack areas
in master file table (MFT) records. The fourth technique hides data in the
ordinary file slack area of a regular file (as in the case of Btrfs, this tech-
nique is present in all the £ishy modules except for the APFS module). The
filesystem interface and parser are realized by employing The Sleuth Kit and
its Python bindings pytsk3 (pypi.org/project/pytsk3) and Construct
(construct.readthedocs.io/en/latest) to detect and model the filesys-
tem structures.

— ext4 Module: This module parses the common ext4 Linux and Android
filesystem. In addition to the almost universal file slack hiding technique, the
ext4 module supports five hiding techniques. One uses nanosecond locations
in the inode tables to hide data [12]. Other techniques leverage other areas
in the inodes (such as the osd2 and obso_faddr fields), backup copies of
group descriptor tables and slack areas connected to filesystem superblocks.
Unlike the NTFS module, the ext4 module employs an additional internal
filesystem parser in combination with the pytsk3 library.

All the fishy modules relevant to the interface implementation are presented
in more detail in Section 4.3. Table 2 shows all the hiding techniques that can
be used via the new interface as part of the data synthesis framework ForTrace.

4.2 ForTrace Framework

ForTrace [14] is a data synthesis framework based on hystck [15]. As shown
in Figure 8, the architecture supports the simulation of human-computer inter-
actions by leveraging a client-server architecture connected through a private
network so that the collected network traffic is not affected by ForTrace-specific
orchestration artifacts [14].
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Table 2. Integrated fishy and ForTrace data hiding techniques.

Hiding Technique NTFS Btrfs ext4 Description

file slack v v v Uses file slack

mftslack v Uses master file table entry slack
addcluster v Adds clusters to files for hiding data
badcluster v Marks bad clusters for hiding data

reserved_gdt_blocks v Uses reserved group descriptor table blocks
superblock_slack v Uses superblock slack
osd2 v Uses osd2 entries in inodes
obso_faddr v Uses obso_faddr entries in inodes
nanoseconds v v Uses nanosecond parts of timestamps
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Fig. 8. ForTrace framework architecture [14].

The server-side components handle organizational tasks. The Virtual Ma-
chine Monitor (VMM) class generates the client-side components by cloning a
previously installed and configured template. Additionally, sockets for commu-
nications are created and maintained by the class. The Guest class handles the
actual communications between the server and client components. It transfers
commands and parameters to the client. This component is called the framework
master in Figure 8. The client side is a virtual machine cloned by the Virtual
Machine Monitor class that is referred to as the interaction manager in Figure 8.
It executes the client-side modules corresponding to the commands sent by the
Guest class and returns status updates to the server components.

The ForTrace workflow is briefly summarized as follows. First, the Virtual
Machine Monitor class clones a template. Next, the client and server components
attempt to connect over the private network. Following this, the created scenario
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Fig. 9. Typical image partitioning created by ForTrace.

is communicated to the client. The client executes all the necessary actions. After
completing the scenario, a network dump and an optional memory dump are
created. A hard disk image with all the new traces is also created. Finally, the
client is shut down. If specified, the client is deleted.

4.3 Data Synthesis Framework Integration

The integration of the two frameworks provides the ability to invoke fishy func-
tions directly without having to invoke fishy from a different console while at-
tempting to create a highly realistic image simultaneously using all the ForTrace
data synthesis functions. Like the existing framework components, the new inter-
face is also constructed in a modular manner, meaning that module extensions
and new modules can be added easily using the new specifications. The usual first
step of interaction with fishy is skipped because the interface directly invokes
the hiding technique wrappers with the appropriate parameters.
The new interface is designed to fulfil three goals:

— The principal functionality of the new interface is that ForTrace can invoke
the fishy hiding techniques. fishy could have been implemented like other
ForTrace modules, but this would leave additional framework artifacts on
the guest machine, which must always be avoided in a data simulation envi-
ronment. Instead, the new interface is implemented as a exclusive server-side
utility that can be used like regular modules during data synthesis.

— Another key functionality is that service on the synthesized virtual machine
need not be interrupted. This is important because disruption of service due
to the use of data hiding techniques would constitute high detectability of
manipulation. To achieve this goal, changes were made in fishy to allow
for specific starting point offsets, which are also included in every function
in the filesystem parsers and hiding techniques. Additionally, checks are im-
plemented to see how running guest machines react to the use of hiding
techniques.

— Compatible hiding techniques must work despite the presence of additional
partitions. By default, fishy only works with single filesystem partitions.
However, virtual machines created by ForTrace have additional partitions
such as the additional default Windows reserved partition (Figure 9). The
hiding techniques would attempt their workflows starting at the first marked
partition, resulting in immediate failure. Therefore, the actual offset of the
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correct partition is added to every offset computation in fishy to find the
correct partition and filesystem structure.

The interface implementation involved three steps. First, fishy was adapted
so that the potential additional offset of a specific partition in an image could be
interpreted and added to all the necessary functions. This change was realized
by adding an additional parameter to all the functions that compute offsets in
the filesystem.

Second, fishy was integrated with ForTrace by implementing a utility class
that allows direct invocations of hiding technique wrappers to support running
filesystems, i.e., the operations of a manipulated virtual machine are not dis-
turbed by hiding data. When called, the class has to be initialized with the path
to the synthesized image and the partition offset containing the filesystem the
user intends to manipulate. Third, an additional change to ForTrace was an
optional second template and client-side component creation process. ForTrace
previously only created qcow2 images. However, to use fishy, a raw image file
is needed. Therefore, an installation script for raw templates was added along
with optional create_guest_raw and create_raw functions to create and start
raw guest images, respectively.

5 Validation Model and Evaluation

This section evaluates the data hiding techniques. It introduces the validation
model for assessing the difficulty of detecting anti-forensic data hiding tech-
niques. Next, the model is employed to evaluate Btrfs data hiding techniques.
Finally, the framework interface functionality is assessed.

5.1 Validation Model

The validation model for evaluating the difficulty of discovering Btrfs hiding
techniques has three levels of complexity:

— Basic Level: The first level provides an entry barrier for hiding techniques
and is, therefore, the weakest validation level. A hiding technique that fails to
succeed at the basic level is disqualified from hiding data and would only be
usable in another context such as creating falsified evidence [7]. The basic
level simulates an uneducated user without forensic knowledge and tools.
The only available knowledge is that a hiding incident has occurred and the
only tool available at the basic level is a filesystem check. The goal is to
confirm the existence of a data hiding incident.

— Specialist Level: The second level is equivalent in difficulty to a crypt-
analytic chosen plaintext attack [39]. The specialist level assumes that the
digital forensic pratitioner knows that hidden data is in the system. However,
the practitioner does not know the actual hiding technique used. In addition
to knowledge about the incident, additional tools such as The Sleuth Kit are
available. Due to the availability of knowledge and tools, the goals at this
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level are increased. In addition to confirming the data hiding incident, it is
necessary to find and clear the system of hidden data.

— White Box Level: The third level is comparable in difficulty to a crypt-
analytic white box attack [21,40]. The level assumes knowledge about the
hiding technique as well as access to all possible tools, including Btrfs foren-
sic tools. The only limitations are the lack of knowledge about the size or
type of hidden data and no direct access to the specific hiding technique. Due
to the increased capabilities at this level, the goals increase in complexity. In
addition to confirming the data hiding incident and locating the hidden data,
it is required to perform a complete or at least partial reconstruction of the
hidden data. However, it is assumed that the hidden data is not encrypted.

5.2 Btrfs Hiding Technique Evaluation

This section evaluates data hiding in the Btrfs file slack and timestamp data
structures. It also evaluates the new interface that integrates the fishy anti-
forensic framework with the ForTrace data synthesis framework.

Btrfs File Slack Hiding. Typically, file slack hiding techniques offer the great-
est potential data hiding capacity [23]. While this is also true for the Btrfs im-
plementation, there is a caveat regarding reduced storage capacity. Files that are
small enough to fit within the extent items are marked as inline and leave no us-
able slack because they are integrated in metadata structures [37]. Additionally,
the stability of this data hiding technique is low because file sizes change. There-
fore, it is possible that growing files may overwrite hidden data. Methods for
increasing stability include filling slack areas backwards and hiding data in files
that are rarely used. However, both methods would reduce the storage capacity.

The basic validation level can only employ filesystem checks. Since the data
hiding technique computes and replaces the checksums of used file data blocks,
it is not possible to confirm the data hiding incident at the basic level.

The specialist validation level has a much better chance at finding hidden
data. While there is no direct way to find the hidden data, sampling file contents
using the icat tool can lead to discovery. Figure 10 shows that hidden text is
easily detected, confirming the data hiding incident and enabling the removal of
the hidden data.

In the case of less recognizable data, such as binary image data in Figure 11,
achieving the specialist level goal is more complex. Additional steps would have
to be taken to confirm hidden data. This could be accomplished in the same way
as the data hiding technique. Specifically, istat would be used to obtain the file
size to be compared with the icat file size that includes the slack space. Hidden
data is confirmed when the icat output is larger than the istat output.

Since the data hidden in file slack can be discovered at the specialist level,
the same process can be applied at the more powerful white box level. Since the
white box level has no restrictions, a data reconstruction is also possible using
similar methods as at the specialist level. However, manipulation that is harder
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Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date;
Sometime too hot the eye of heaven shines,
And often is his gold complexion dimm'd;
And every fair from fair sometime declines,
By chance or nature’s changing course untrimm'd;
But thy eternal summer shall not fade,
Nor lose possession of that fair thou ow’st;
Nor shall death brag thou wander’st in his shade,
dhen in eternal lines to time thou grow’st:

So long as men can breathe or eyes can see,

So long lives this, and this gives life to thee.

Fig. 10. icat output of a hidden text file in Btrfs file slack.

to detect involves hidden data in slack space that has been deleted. Since file
slack areas filled with zeros are not out of the ordinary, it would impossible to
determine if hidden data existed in the past at all three validation levels.

Btrfs Timestamp Hiding. The Btrfs timestamp hiding technique is more
powerful than the comparable methods for the ext4 and APFS filesystems be-
cause all four Btrfs nanosecond bytes can be used to hide data. Of course, the
storage capacity of this technique is significantly lower than the file slack hiding
technique. Each timestamp has only four bytes available and all four timestamps
of the inode can be employed to hide data. Thus, there is a maximum of 16 bytes
of available data hiding space per inode. The stability of the timestamp hiding
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Fig. 11. icat output of a hidden image file in Btrfs file slack.

Inode (virtual): 1
Subvolume: 0x5
Inode (real): 257
Allocated: yes
Compressed: no
Generation: 8

UID / GID: © / ©
Mode: drwxr-xr-x
Size: 0

Num of Links: 1

Flags:

Inode Times:

Accessed: 2023-01-14 19:23:21.1701144692 (UTC)
Created: 2023-01-14 19:23:25.544175136 (UTC)
Modified: 2023-01-14 19:23:25.1970479201 (UTC)

Extended attributes:

Fig. 12. istat output of inode timestamps affected by write.

technique can be improved by reducing the number of timestamps used because
some timestamps are changed more frequently than others. But this would sig-
nificantly decrease the storage capacity of the timestamp technique.

The base validation level would fail to find hidden data in the timestamps
because the checksums would have been modified after the data was hidden.
Therefore, the data hiding incident could not be confirmed at the base level.
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Inode (virtual): 1
Subvolume: 0x5
Inode (real): 257
Allocated: yes
Compressed: no
Generation: 8

UID / GID: © / ©
Mode: drwxr-xr-x
Size: 0

Num of Links: 1

Flags:

Inode Times:

Accessed: 2023-01-14 19:23:21.000000000 (UTC)
Created: 2023-01-14 19:23:25.000000000 (UTC)
Modified: 2023-01-14 19:23:25.000000000 (UTC)

Extended attributes:

Fig. 13. istat output of inode timestamps affected by clear.

At the specialist level, single inodes with hidden data could be discovered.
While the hidden data shown in Figure 12 is difficult to distinguish, the presence
of deleted data shown in Figure 13 would be discovered because it would be very
unusual for multiple timestamps to have their nanosecond parts filled with zeros.

Inode (virtual): 1
Subvolume: 0x5
Inode (real): 257
Allocated: yes
Compressed: no
Generation: 8

UID / GID: © / ©
Mode: drwxr-xr-x
Size: 0

Num of Links: 1

Flags:

Inode Times:

Accessed: 2023-01-14 19:23:21.908000000 (UTC)
Created: 2023-01-14 19:23:25.748000000 (UTC)
Modified: 2023-01-14 19:23:25.748000000 (UTC)

Extended attributes:

Fig. 14. istat output of unaffected inode timestamps.

However, an anomaly would be identified at the specialist level if the unaf-
fected timestamps in Figure 14 were to be compared against the affected time-
stamps in Figure 12. Therefore, the data hiding incident could be confirmed at
the specialist level, but it would not be possible to find all the hidden data.
Nevertheless, at the specialist level it would be possible to find all the former
hiding places in the case of deleted data.
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At the white box level, the first goal of confirming the data hiding incident
would be accomplished in the same way as at the specialist level. Similarly, all the
locations with deleted hidden data would be identified. However, reconstructing
the data would be complicated. If the hidden data was simple text, manually in-
vestigating all the timestamps using a hex or disk editor could restore the hidden
data. However, if hidden binary data or encrypted data was deleted, this process
would not work because the recovered hidden data would be indistinguishable
from legitimate timestamps.

5.3 Framework Interface Functionality

The correct functionality of the new interface between the fishy and ForTrace
frameworks is validated by showing that the three goals stated above are accom-
plished:

— ForTrace is able to use the hiding techniques provided by fishy. This funda-
mental functionality is realized by the newly-implemented DataHiding utility
class.

— Service on the manipulated virtual machine must not be interrupted. All the
hiding techniques presented in Table 2 can be used to hide data on running
machines and shutdown machines without interrupting running machines or
preventing shutdown machines from being started. This is accomplished by
incorporating the filesystem partition offset as a parameter of the interface
function that invokes the hiding technique wrappers.

— Compatible hiding techniques must work despite the presence of additional
partitions. The changes that address the previous goal also help accomplish
this goal. A new parameter -area has been added to account for different
starting offsets and multiple filesystems available in the partitioning. The
separate use of fishy in the traditional manner is not affected because the
new parameter is initialized to zero by default.

6 Conclusions

This work has attempted to improve the digital forensic process by assessing anti-
forensic measures at the filesystem level and providing a means for synthesizing
datasets containing anti-forensic artifacts. Additionally, three validation models
for assessing anti-forensic data hiding techniques have been developed.

The research has demonstrated that the Btrfs filesystem is resilient to some
data hiding methods due to its robust checksums and filesystem protections such
as its logical addressing structure and reducing the number of files capable of
producing slack space. However, Btrfs is still susceptible to data hiding meth-
ods. The new interface that integrates the fishy anti-forensic framework and
the ForTrace data synthesis framework makes it possible to evaluate data hiding
techniques for Btrfs as well as for the popular ext4 and NTFS filesystems. Due
to its modular design, the interface component can be extended to include addi-
tional anti-forensic data hiding techniques and other filesystems. Furthermore,
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ForTrace can be used to generate complex scenarios involving hidden data at
the filesystem level over and above its existing data synthesis functions.

Future research will attempt to enhance compatibility by synthesizing datasets
using additional fishy-compatible filesystems such as APFS, FAT32 and ex-
FAT. A viable APFS interface requires a ForTrace macOS implementation that
is missing, but introducing FAT32 and exFAT compatibility is relatively simple.
This would permit the simulation of anti-forensic manipulations of USB devices
during data synthesis.

Future research will also focus on the Btrfs filesystem. Certain other slack and
reserved areas are known to exist in Btrfs, some of which have been considered
unusable due to checksums and other filesystem protections [36,37]. However,
experiments conducted during this research revealed that some of the reserved
areas in the filesystem could be used to hide data. Key features that have not
been implemented for Btrfs with regard to this research are using multiple hard
drives and addressing multiple subvolumes. Structures and parsing functions
needed to address these issues are present in the current Btrfs module. Future
research will attempt to implement this functionality.
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