

Universität der Bundeswehr München Werner-Heisenberg-Weg 39 85577Neubiberg

Modulhandbuch des Studiengangs

Bauingenieurwesen und Umweltwissenschaften (Bachelor of Science)

an der Universität der Bundeswehr München

(Version 2016)

Inhaltsverzeichnis

2900	Bachelor-Arbeit BAU	5
Pflichtn	nodule KI, UI	
1289	Programmieren und Statistik	6
1290	Grundlagen der Geotechnik	9
1291	Mathematik I	12
1292	Mathematik II	14
1293	Mathematik III	16
1396	Grundlagen des Konstruktiven Ingenieurbaus	18
1397	Einführung in das Wasserwesen	20
1398	Grundlagen des Verkehrswesens und der Raumplanung I	23
1399	Grundlagen des Verkehrswesens und der Raumplanung II	25
1400	Hydromechanik und Wasserbau	28
2507	Entwerfen und Konstruieren	31
2509	Grundlagen des Baubetriebs	33
2894	Baukonstruktion und Bauphysik	35
2902	Baumechanik I	38
2903	Baumechanik II	40
2904	Baumechanik III	43
2906	Statik 1 - Statik statisch bestimmter Tragwerke	46
2907	Statik 2 - Statik statisch unbestimmter Tragwerke	49
3012	Einführung FEM	51
3013	Geologie, Werkstoffe und Bauchemie	53
3019	Grundlagen der Geodäsie	56
3021	Werkstoffe und Bauchemie	59
Pflichtn	nodule Konstruktiver Ingenieurbau	
1401	Stahl- und Holzbau	76
1402	Massivbau	78
1403	Vertiefte Kapitel der Statik und Numerik	80
3027	Interdisziplinäres Projekt KI	112
Pflichtn	nodule Umwelt und Infrastruktur	
1404	Siedlungswasserwirtschaft und Abfalltechnik	62
	Verkehrstechnik, -simulation und -leitsysteme	
	Umweltrecht, -planung und -prüfung	
	Interdisziplinäres Projekt UI	

1404 Siedlungswasserwirtschaft und Abfalltechnik	62
1405 Verkehrstechnik, -simulation und -leitsysteme	64
1406 Umweltrecht, -planung und -prüfung	67
1407 Wasser, Boden und Umwelt	83
1408 Verkehr und Umwelt	86
2908 Materialmodellierung	89
2909 Tragwerksschwingungen und Erschütterungsschutz	91
2910 Anwendungen der Geodäsie	94
2940 Hydromechanik für ME	96
2941 Verkehrsströme	70
2942 Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME	99
2944 Stoffkennwerte, Werkstoffe und Bauchemie für ME	105
2946 Sonderkapitel des Bauingenieurwesens und der Umweltwissenschafte	en I 108
2947 Sonderkapitel des Bauingenieurwesens und der Umweltwissenschafte	∍n II 110
3023 Interdisziplinäres Projekt UI	73
Wahlpflichtmodule Umwelt und Infrastruktur	
1401 Stahl- und Holzbau	76
1402 Massivbau	78
1403 Vertiefte Kapitel der Statik und Numerik	80
1407 Wasser, Boden und Umwelt	83
1408 Verkehr und Umwelt	86
2908 Materialmodellierung	89
2909 Tragwerksschwingungen und Erschütterungsschutz	91
2910 Anwendungen der Geodäsie	94
2940 Hydromechanik für ME	96
2942 Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME	99
2943 Statik III und Materialtheorie	102
2944 Stoffkennwerte, Werkstoffe und Bauchemie für ME	105
2946 Sonderkapitel des Bauingenieurwesens und der Umweltwissenschafte	en I 108
2947 Sonderkapitel des Bauingenieurwesens und der Umweltwissenschafte	en II 110
3027 Interdisziplinäres Projekt KI	112
Studium plus	
1002 Seminar Studium plus 1	114
1005 Seminar studium plus 2, Training	117

Modulname	Modulnummer
Voruniversitäre Leistungen / Sprachausbildung	1001

Modulverantwortliche/r

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
Summe	(Pflicht u	nd Wahlpflicht)		8.00

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele
Inhalt
Literatur
Leistungsnachweis
Verwendbarkeit
Dauer und Häufigkeit

Modulname	Modulnummer
Bachelor-Arbeit BAU	2900

Zuordnung zum Studiengang
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
300	60	240	10

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
Summe (Pflicht und Wahlpflicht)		10.00		

Vc	oraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele
Inhalt
Literatur
Leistungsnachweis
Verwendbarkeit
Dauer und Häufigkeit

Modulname	Modulnummer
Programmieren und Statistik	1289

Zuordnung zum Studiengang
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr. rer. nat. Sven-Joachim Kimmerle

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
12891	VL	Programmieren	Pflicht	2.00
12892	UE	Programmieren	Pflicht	1.00
12893	VL	Statistik	Pflicht	2.00
12894	UE	Statistik	Pflicht	1.00
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Grundkenntnisse der Mathematik

Qualifikationsziele

Die Studierenden lernen am Beispiel der Statistik und Wahrscheinlichkeitstheorie die mathematische Modellierung von Phänomenen technisch-natürlicher Systeme, die zufälligen Einflüssen unterworfen sind, kennen. Sowohl mit der Programmierung von Rechnern als auch mit der stochastischen Untersuchung von Systemen mit Unsicherheiten werden unverzichtbare Grundlagen für die ingenieurwissenschaftliche Bearbeitung praktischer Aufgaben und für deren kritische Beurteilung gelegt.

Insbesondere lernen die Studierenden in Grundzügen die kommerzielle Software MATLAB zur Lösung mathematischer Probleme und zur Auswertung und graphischen Darstellung von Ergebnissen kennen. Die Studierenden können anschließend mathematische Fragestellungen aus dem Bereich des Bauingenieurwesens und der Umweltwissenschaften selbständig in MATLAB oder einer ähnlichen Software mit Hilfe von Standardbibliotheken lösen.

Inhalt

Das Modul vermittelt die Grundlagen des Einsatzes programmierbarer Rechner sowie die Grundlagen der mathematischen Statistik. Statistik und Programmierung sind in dem Modul verzahnt. Einerseits dienen einfache Aufgaben aus der Statistik als Beispiele für die Programmierung, andererseits werden statistische Verfahren beispielhaft auf die Beurteilung von Rechenprogrammen angewendet. Im einzelnen sind folgende Themen Inhalt der Vorlesung:

Programmierung (Vertretungs-Prof. Dr. Kimmerle):

- Benutzung von MATLAB als Taschenrechner
- Datentypen, Deklaration, Ausdrücke, Zuweisung
- Vektoren und Matrizen in MATLAB
- Graphische Ausgabe in MATLAB
- Einfache Algorithmen und Ablaufsteuerung: Iteration, Verzweigung, Rekursion
- Unterprogramme, Funktionen, Parameterübergabe
- Speichern/Einlesen in MATLAB
- Komplexität anhand der Beispiele Suchen und Sortieren: worst-case, best-case, average-case
- Grundideen der objektorientierten Programmierung

Statistik (Vertretungs-Prof. Dr. Kimmerle)

- Zufall; Wahrscheinlichkeitsbegriff; Kombinatorik
- Bedingte Wahrscheinlichkeit; statistische Unabhängigkeit
- Diskrete Zufallsvariable; wichtige diskrete Verteilungen (u. a. Binomialverteilung; Poisson-Verteilung, geometrische Verteilung) und deren Charakterisierung
- Kontinuierliche Zufallsvariable; wichtige kontinuierliche Verteilungen (u. a. Uniforme Verteilung, Normalverteilung, Exponentialverteilung) und deren Charakterisierung
- Erwartungswerte/Varianz von Verteilungen
- Numerische Erzeugung von Pseudo-Zufallszahlen
- Empirischer Mittelwert/empirische Streuung bei Normalverteilungen; Chi-Quadratund t-Verteilung; Student-t-Test/Einstichprobenproblem, Zweistichprobenprobelm, Konfidenzintervalle
- Kernaussage des Zentralen Grenzwertsatzes; Pearsons Chi-Quadrat-Test, Ausblick nichtparametrische Tests

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

alle Lehrveranstaltungen

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester.

Als Startzeitpunkt ist das Herbsttrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Grundlagen der Geotechnik	1290

Modulverantwortliche/r Dr.-Ing. Conrad Boley

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
240	144	96	8

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
12901	VÜ	Geotechnik I	Pflicht	4.00
12902	Р	Goetechnik-Praktikum	Pflicht	4.00
12903	V/Ü/P	Geotechnik II	Pflicht	4.00
Summe (Pflicht und Wahlpflicht)			12.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Keine formalen Voraussetzungen.

Qualifikationsziele

Die Studierenden besitzen das Verständnis für die Grundzüge der theoretischen Bodenmechanik. Sie erlernen und beherrschen die grundlegenden Berechnungsmethoden der Geotechnik. Die Studierenden sind befähigt selbständig Labor- und Feldversuche zur Bestimmung der Bodeneigenschaften durchzuführen. Weiterhin beherrschen sie die Bemessungsmethoden für geotechnische Bauwerke.

Inhalt

Geotechnik I (Prof. Boley):

- Grundlagen der Bodenphysik und der Baugrunderkundung
- Klassifizierung und Benennung von Böden
- Grundlagen der Grundwasserströmung
- Spannungen infolge Eigengewicht und flächenhafter Auflasten
- Grundlagen der Setzungsberechnung
- Scherfestigkeit von Böden
- Grundlagen der Erddrucktheorie
- Eindimensionale Konsolidationstheorie

Geotechnik II (Prof. Boley):

- Böschungs- und Geländebruchberechnungen
- Bemessung von Baugrubenumschließungen und Stützbauwerken
- Geotechnische Bemessung von Flachgründungen
- Grundlagen der Tiefgründung von Bauwerken (Pfähle, etc.)
- Grundbruchberechnungen
- Verankerungen

Praktikum (Prof. Boley):

- Klassifizierung und Ansprache von Böden
- Organoleptische Ansprache von Böden
- Bestimmung des Wassergehaltes
- Sieb- und Schlämmanalyse
- Bestimmung des Kalkgehaltes und des Glühverlustes
- Einführung in die Probennahme
- Erkundungsverfahren
- Versuche zur Bestimmung der Durchlässigkeit von Böden
- Rahmenscherversuche
- Einaxiale Druckversuche und Triaxialversuche
- Bestimmung der Verformungseigenschaften von Böden
- Feldversuche zur Erkundung der Lagerungsdichte (Rammsondierungen)
- Bestimmung der Verformbarkeit von Böden im Feld mittels Plattendruckversuchen

Es sollen - sofern die Möglichkeit gegeben ist - zwei Fachexkursionen (Tagesexkursion) stattfinden.

Literatur

Leistungsnachweis

Schriftliche Prüfung 180 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 30 Minuten und ein unbenoteter Teilnahmeschein (Unbenoteter Teilnahmeschein für das geotechnische Praktikum).

Verwendbarkeit

Die Inhalte des Moduls bilden die Grundlage für "Geotechnik Vertiefung"

Dauer und Häufigkeit

Das Modul dauert 3 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester.

Als Startzeitpunkt ist das Herbsttrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Mathematik I	1291

Zuordnung zum Studiengang
B.Sc. Elektrotechnik und Informationstechnik (EIT) 2015 ETS
B.Sc. Elektrotechnik und Informationstechnik (EIT) 2015 KT
B.Sc. Elektrotechnik und Informationstechnik (EIT) 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
Dr. rer. nat. Matthias Gerdts	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
12911	VL	Mathematik I	Pflicht	4.00
12912	UE	Mathematik I	Pflicht	2.00
Summe	(Pflicht u	ınd Wahlpflicht)		6.00

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Abiturkenntnisse Mathematik

Qualifikationsziele

Die Studierenden kennen die grundlegenden Konzepte und Methoden der Linearen Algebra zur mathematischen Beschreibung naturwissenschaftlich-technischer Strukturen und Prozesse in den Ingenieurwissenschaften.

Inhalt

Zahlen und Vektoren

- Mengen und Abbildungen
- reelle und komplexe Zahlen
- vollständige Induktion
- Binomialkoeffizienten
- Vektoren

Lineare Algebra

- Matrizen und Matrixmultiplikation
- lineare Gleichungssysteme
- Vektorräume
- Determinanten
- lineare Abbildungen und Eigenwerte

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit

Pflichtmodul in den Bachelorstudiengängen BAU, EIT und LRT.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Mathematik II	1292

Zuordnung zum Studiengang
B.Sc. Elektrotechnik und Informationstechnik (EIT) 2015 ETS
B.Sc. Elektrotechnik und Informationstechnik (EIT) 2015 KT
B.Sc. Elektrotechnik und Informationstechnik (EIT) 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr. rer. nat. Dr.-Ing. Stefan Schäffler

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
12921	VL	Mathematik II	Pflicht	4.00
12922	UE	Mathematik II	Pflicht	2.00
Summe	(Pflicht u	ınd Wahlpflicht)		6.00

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Abiturkenntnisse Mathematik

Qualifikationsziele

Mathematische Kenntnisse über die Analysis einer reellen Veränderlichen, über gewöhnliche Differentialgleichungen und über spezielle Transformationen, die im weiteren Studium und in der beruflichen Praxis unabdingbar sind.

Inhalt

Analysis einer reellen Veränderlichen

- Funktionen, Grenzwerte, Stetigkeit
- Differentiation
- Potenzreihen
- Integration

Gewöhnliche Differentialgleichungen

- Gewöhnliche Differentialgleichungen n-ter Ordnung
- Gewöhnliche Differentialgleichungssysteme
- lineare Differentialgleichungssysteme mit konstanten Koeffizienten
- Stabilität

Transformationen

- Laplace-Transformation
- Fourier-Transformation

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten

Verwendbarkeit

Pflichtmodul in den Bachelorstudiengängen BAU, EIT und LRT.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Mathematik III	1293

Zuordnung zum Studiengang
B.Sc. Elektrotechnik und Informationstechnik (EIT) 2015 ETS
B.Sc. Elektrotechnik und Informationstechnik (EIT) 2015 KT
B.Sc. Elektrotechnik und Informationstechnik (EIT) 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
Dr. rer. nat. habil. Thomas Apel	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
12931	VL	Mathematik III	Pflicht	4.00
12932	UE	Mathematik III	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)		6.00		

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Die Studierenden sollten mit grundlegenden Vektoroperationen vertraut sein sowie
	Funktionen einer Veränderlichen differenzieren und integrieren können. Weitere Kenntnisse aus dem Gebiet
	Differential- und Integralrechnung für Funktionen einer Veränderlichen
	(Grenzwert, Stetigkeit, Differenzierbarkeit, Mittelwertsätze, Taylorreihe) sind hilfreich.

Qualifikationsziele

Die Studierenden kennen die grundlegenden analytischen Methoden der mehrdimensionalen Differential- und Integralrechnung, die in der mathematischen Beschreibung naturwissenschaftlich-technischer Strukturen und Prozesse in den Ingenieurwissenschaften zum Einsatz kommen. Sie sind sicher im Umgang mit der Differentialrechnung und können Integrale selbst bestimmen.

Die Studierenden kennen den Begriff des Tensors und können grundlegende Rechenoperationen mit Tensoren ausführen.

Inhalt

Analysis mehrerer reeller Veränderlicher

- Differentiation
- Integration

Einführung in die Tensorrechnung

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten

Verwendbarkeit

Pflichtmodul in den Bachelorstudiengängen BAU, EIT und LRT.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester. Als Startzeitpunkt ist das Wintertrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Grundlagen des Konstruktiven Ingenieurbaus	1396

Zuordnung zum Studiengang
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
Dr. techn. Andreas Taras	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
13961	VL	Konstruktiver Ingenieurbau I	Pflicht	4.00
13962	UE	Konstruktiver Ingenieurbau I	Pflicht	2.00
Summe	(Pflicht u	ınd Wahlpflicht)		6.00

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Fächern Mechanik, Werkstoffe des Bauwesens und die Grundlagen der Baustatik vorausgesetzt.

Qualifikationsziele

Im Modul Grundlagen des Konstruktiven Ingenieurbaus erwerben die Studierenden grundlegende Kenntnisse zum Tragverhalten einfacher Tragwerke aus Stahl, Holz und Beton und die Fähigkeit, diese selbstständig zu dimensionieren und deren Stabilitätsverhalten zu beurteilen.

Inhalt

Im Modul Grundlagen des Konstruktiven Ingenieurbaus (Prof. Taras/Prof. Keuser) werden nach einer werkstoffübergreifenden Einführung in die typischen Bauformen im Stahl-, Holz- und Massivbau die Grundlagen der Sicherheitstheorie und die bemessungsrelevanten Werkstoffkenngrößen hergeleitet. Hierauf aufbauend erfolgt der Übergang zu Tragelementen und Tragwerken unter Berücksichtigung der Stabilität und der Theorie II. Ordnung. Anschließend werden die Bemessungskonzepte und Nachweisformate für Bauteile aus Stahl, Holz, und Beton entwickelt. Abschließend wird auf die Gebrauchstauglichkeit und spezielle Tragmodelle eingegangen.

Das Lernziel dieses Moduls ist die Vermittlung von werkstoffübergreifendem Grundlagenwissen zum Tragverhalten und zur Bemessung von Bauteilen aus Stahl, Holz und Beton.

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für

- Stahl- und Holzbau
- Massivbau

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester.

Als Startzeitpunkt ist das Herbsttrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Einführung in das Wasserwesen	1397

Zuordnung zum Studiengang
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. Andreas Malcherek

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
240	120	120	8

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
13971	VL	Hydraulik	Pflicht	2.00
13972	VL	Wasserversorgung	Pflicht	1.00
13973	UE	Wasserversorgung	Pflicht	1.00
13974	VL	Abwasserableitung und -reinigung	Pflicht	1.00
13975	UE	Abwasserableitung und -reinigung	Pflicht	1.00
13976	VL	Wasserbau I	Pflicht	2.00
13977	Р	Laborpraktikum	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)			10.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden erlernen erste Grundlagen der Rohr- und Gerinnehydraulik als Voraussetzung für das Verständnis wasserwirtschaftlicher Bauwerke und Anlagen. Für die Wasserversorgung und Abwasserableitung und -reinigung werden die konzeptionellen, verfahrenstechnischen und naturwissenschaftlichen Grundlagen sowie Bemessungsansätze vermittelt. Die Einführung in den Wasserbau ist Voraussetzung zur Bemessung von Hochwasserschutzanlagen sowie zur Verbesserung der Gewässerstruktur.

Inhalt

Hydraulik (Prof. Malcherek):

- 1. Die Massenerhaltung in der Hydraulik
- 2. Volumen und Druck
- 3. Der hydrostatische Druck
- 4. Die Druckkraft auf beliebige Flächen
- 5. Kräfte und Impulsbilanz

- 6. Die Energieerhaltung
- 7. Die Viskosität der Flüssigkeiten
- 8. Rohrströmungen
- 9. Gerinneströmungen
- 10Strömen und Schießen
- 11Die Strömungskraft auf Körper

Wasserversorgung (PD Dr. Krause):

- · Grundlagen der Wasserversorgung
- Wasservorkommen und Nutzbarkeit
- Wasserbedarf
- Wassergewinnung
- · Anforderung an die Wasserbeschaffenheit
- Wasseraufbereitung
- Wasserförderung
- Wasserspeicherung
- Wasserverteilung
- Trinkwasserschutzgebiete

Abwasserableitung (PD Dr. Krause, S. Faltermaier):

- Abwasseranfall und Beschaffenheit
- Abwasserarten
- Entwässerungsverfahren
- Kanalnetzberechnung
- Kanalbauwerke
- Regenwasserbehandlung
- Mechanische Abwasserreinigung
- · Biologische Abwasserreinigung
- Nachklärbecken

Wasserbau I (Prof. Malcherek):

- 1. Armaturen als lokale Verluste
- 2. Wasserstandsregelung durch Kontrollbauwerke
- 3. Stauanlagen
- 4. Wasserkraftanlagen
- 5. Die instationäre Rohrströmung und das Wasserschloss
- 6. Die Eulersche Turbinenformel
- 7. Bemessung von Kreiselpumpen
- 8. Wasserräder und Steffturbine
- 9. Turbinenarten
- 10Rechen und Tiroler Wehr

Laborpraktikum (Prof. Malcherek):

- Modellgesetze (Vorlesung)
- Messtechnik: Druck, Geschwindigkeit, Durchfluss
- Druckverluste in Rohrleitungen
- Wechselsprung
- Impulssatz

Literatur

Leistungsnachweis

Schriftliche Prüfung 180 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Grundlagen des Verkehrswesens und der Raumplanung I	1398

Zuordnung zum Studiengang B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015 B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r

Dr.-Ing. Klaus Bogenberger

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
13981	VL	Grundlagen des Verkehrswesens	Pflicht	2.00
13982	UE	Grundlagen des Verkehrswesens	Pflicht	1.00
13983	VL	Grundlagen der Raumordnung und Bauleitplanung	Pflicht	1.00
13984	UE	Grundlagen der Raumordnung und Bauleitplanung	Pflicht	1.00
Summe (Pflicht und Wahlpflicht)			5.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden erlernen Grundlagen der Verkehrs- und Raumplanung und der Verkehrstechnik, erhalten insbesondere eine Einführung in die Planungsaufgaben und - modelle. Sie erlernen Fähigkeiten und Fertigkeiten zur Durchführung von Verfahren und Anwendung von Modellen und Methoden in der Verkehrs- und Raumplanung.

Die Studierenden kennen die Funktionsweisen der wichtigsten Baumaschinen. Durch die Handhabung sollen sie in der Lage sein, Zeitabläufe besser einschätzen zu können.

Inhalt

Grundlagen des Verkehrswesens (Prof. Bogenberger) - HT

- Verkehrserhebung, Verkehrsmessungen, Verkehrsbefragungen
- Verkehrsplanungsprozess
- Einführung in die Verkehrsplanungsmodelle

- 4-Stufen-Modell: Verkehrserzeugung, Verkehrsverteilung, Verkehrsmittelwahl, Routenwahl (z.B. mit Raum-Aggregat-Modell, Gravitationsansätze)
- Quelle+Ziel-Schätzverfahren
- Verkehrsnetzplanung: Fußgänger, Rad, ÖPNV, motorisierter Individualverkehr
- Makroskopische, mikroskopische Verkehrskenngrößen
- Fundamentaldiagram

Grundlagen der Raumordnung und Bauleitplanung (Prof. Jacoby) - HT

- System und Rechtsgrundlagen der Raumplanung
- Planungsorganisation, -prozesse und -verfahren
- · Entwicklung der Siedlungs-, Freiraum- und Infrastruktur
- Grundzüge der Mobilitätsentwicklung
- Aufgaben und Instrumente der Raumordnung (Landes- und Regionalplanung)
- Aufgaben und Instrumente der Bauleitplanung (Flächennutzungs- und Bebauungsplanung)

Baumaschinenpraktikum (Prof. Boley) - Vorlesungsfreie Zeit

 Praktisches Erlernen der wichtigsten Funktionsweisen von ausgewählten Baumaschinen

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 25 Minuten und ein unbenoteter Teilnahmeschein.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils in der vorlesungsfreien Zeit.

Als Startzeitpunkt ist die vorlesungsfreie Zeit im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Grundlagen des Verkehrswesens und der Raumplanung II	1399

Zuordnung zum Studiengang B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015 B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. Christian Jacoby

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
13991	VL	Straßenentwurf I	Pflicht	1.00
13992	VL	Straßenbautechnik	Pflicht	1.00
13993	UE	Straßenentwurf und Straßenbautechnik	Pflicht	1.00
13994	VL	Städtebauliche Planung	Pflicht	1.00
13995	VL	Grundlagen der Projektentwicklung	Pflicht	1.00
13996	UE	Städtebauliche Planung und Projektentwicklung	Pflicht	1.00
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Im Straßenentwurf erwerben die Studierenden die Entwurfsgrundlagen für den Bau von Landverkehrswegen. Sie werden in die Lage versetzt, einfache Trassierungsaufgaben zu bearbeiten. In der Straßenbautechnik werden die Grundlagen für die konstruktive Gestaltung des Oberbaues einer Straße gelegt. Die Studierenden erwerben Grundkenntnisse der städtebaulichen Planung und Projektentwicklung, die im Kooperationsfeld von Bauingenieuren, Architekten und Städtebauplanern, Raum- und Umweltplanern sowie Immobilienentwicklern und Juristen von wesentlicher Bedeutung sind.

Inhalt

Straßenentwurf I / Straßenbautechnik (Dr. Kienlein) - WT

Straßenentwurf I

- Grundlagen des Straßenentwurfs
- Trassierung im Lageplan
- Trassierung im Höhenplan
- Trassierung im Querschnitt
- Regelquerschnitte

Straßenbautechnik

- Aufbau der Straßenkonstruktion
- Beanspruchungen aus Verkehrslasten und Klima
- Untergrund und Unterbau
- Frostschutz und Entwässerung
- Konstruktive Gestaltung des Oberbaus (Asphalt, Beton, Pflaster)
- Bemessung (RStO, RDO)

Übung zu Straßenentwurf und -bautechnik

- Trassierungsübungen im Lage- und Höhenplan
- Übungen zur Bemessung

Städtebauliche Planung (Prof. Jacoby) - WT

- Analyse städtebaulicher Entwicklungen und Strukturen
- Städtebauliches Entwerfen (Entwurfsmethoden und -kriterien)
- Städtebauliche Entwicklungs- und Strukturpläne
- Bebauungskonzepte und Bebauungspläne
- Planungen zum Stadtumbau (Stadtsanierung und -erneuerung)
- Umsetzung der städtebaulichen Planung, Zulässigkeit von Bauvorhaben

Grundlagen der Projektentwicklung (Prof. Jacoby/Prof. Höcker) - WT

- Einführung in die Methoden der Projektentwicklung
- Aufgaben und Leistungsbilder der Projektentwicklung
- Projektentwicklung bei städtebaulichen Planungen
- Projektentwicklung bei verkehrlichen Infrastrukturplanungen
- Bewertungsmethoden (Nutzen-Kosten-Analyse, Nutzwertanalyse)
- Machbarkeitsstudien (Projektstudien)

Übung Städtebauliche Planung und Projektentwicklung

- Analyse städtebaulicher Strukturen
- Anfertigung von Bebauungskonzepten
- Auswertung von Bebauungsplänen
- Projektorganisation und Prozessmanagement

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 30 Minuten und ein unbenoteter Teilnahmeschein.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester.

Als Startzeitpunkt ist das Wintertrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Hydromechanik und Wasserbau	1400

Zuordnung zum Studiengang
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r
DrIng. Andreas Malcherek

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14001	VL	Hydromechanik I	Pflicht	1.00
14002	UE	Hydromechanik I	Pflicht	1.00
14003	VL	Hydromechanik II, Hydrologie und Wasserwirtschaft	Pflicht	2.00
14004	VL	Wasserbau II	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden erhalten einen Überblick über hydrologische und wasserbauliche Prozesse und Methoden. Sie können anschließend grundlegende wasserbauliche Fragestellungen bearbeiten. Fast alle Strömungen in Natur und Technik sind reibungsbehaftet und turbulent. In diesem Modul werden daher die Grundlagen für die empirische Erfassung, die Beschreibung und Berechnung von reibungsbehafteten und turbulenten Strömungen erlernt. Das Erarbeitete wird auf Gerinne- und Rorhströmungen angewendet.

Inhalt

Hydromechanik I (Prof. Malcherek):

- 1. Die Lagrangesche Ableitung und Advektion
- 2. Die Massenerhaltung in der Hydromechanik
- 3. Potentialströmungen
- 4. Stromlinien und Stromfunktion
- 5. Dydrodynamische Druckberechnungen
- 6. Die Eulergleichungen

- 7. Die Visksität
- 8. Die Navier-Stokes-Gleichungen
- Turbulenzerfassung
 10Reynoldsgleichungen

Hydromechanik II, Hydrologie und Wasserwirtschaft (Prof. Malcherek):

- 1. Die wandnahe Grenzschicht
- 2. Turbulente Gerinneströmungen
- 3. Turbulente Rohrströmungen
- 4. Das ke-Modell
- 5. Transport: Advektion und Diffusion
- 6. Einführung in die Wasserwirtschaft I
- 7. Einführung in die Wasserwirtschaft II
- 8. Hydrologie I: Die Wasserhaushaltsgleichung
- Hydrologie II: Niederschlag
 Hydrologie III: Verdungstung
- 11 Hydrologie IV: Abfluss

Wasserbau II (Prof. Malcherek):

- 1. Belastung der Gewässersohle
- 2. Normalabfluss
- 3. Spiegelliniengleichung
- 4. Interstationäre Hochwasserberechnungen
- 5. Beginn der Sedimentbewegung, Sohlsicherung
- 6. Berechnung des Geschiebetransports, Kolke
- 7. Einführung in den Verkehrswasserbau
- 8. Unterhaltung von Wasserstraßen
- 9. Fahrdynamik des Schiffs
- 10Schleusen und Schiffshebewerke

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester. Als Startzeitpunkt ist das Wintertrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Entwerfen und Konstruieren	2507

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2011
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
DrIng. Geralt Siebert	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	84	66	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
25071	VL	Konstruktive Geometrie	Pflicht	1.00
25072	VÜ	Darstellungstechnik	Pflicht	1.00
25073	VÜ	Konstruktives Zeichnen, CAD	Pflicht	1.00
25074	VL	Baukonstruktion I	Pflicht	2.00
25075	UE	Baukonstruktion I	Pflicht	1.00
25076	VÜ	Baukonstruktion I	Pflicht	1.00
Summe (Pflicht und Wahlpflicht)			7.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Keine formalen Voraussetzungen.

Qualifikationsziele

Die Studierenden können die Gliederung einer Bauvorlage erstellen und Lastannahmen für Hochbauten als Teil einer Bauvorlage im Rahmen des Bemessungskonzeptes sicher und selbständig ermitteln. Sie sind befähigt, als Basis für spätere Entwürfe Konstruktionselemente nach Beanspruchung und Tragverhalten zu unterscheiden.

Außerdem haben die Studierenden die Fähigkeit erlernt, Pläne und technische Zeichnungen zu lesen und mit Hilfe von CAD selbst zu erstellen. Durch Bearbeitung der

Studienarbeiten werden erste Teile einer Bauvorlage (Zeichnungen, Lastannahmen) erarbeitet, die als Elemente einer größeren Aufgabenstellung (Bauvorlage für ein individuelles Musterhaus) das Verständnis für Interaktion der einzelnen Teildisziplinen im Studium und der späteren Tätigkeit als Ingenieur fördern.

Inhalt

In diesem Modul erhalten die Studierenden eine grundlegende Einführung

- in die zeichnerische Darstellung technischer Inhalte in Form von Plänen (Konstruktive Geometrie, Darstellungstechnik und Konstruktives Zeichnen/CAD)
- in das Aufgabenfeld des konstruktiv und planerisch tätigen Bauingenieurs (Ablauf einer Baumaßnahme, am Bau Beteiligte, rechtliche Randbedingungen)
- in die Grundlagen der Sicherheits- und Bemessungskonzepte
- zu Einwirkungen auf Bauwerke (Lastannahmen)
- zu Konstruktionselementen f
 ür die Konstruktion von Bauteilen

Literatur

Leistungsnachweis

Schriftliche Prüfung 60 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 20 Minuten und ein unbenoteter Teilnahmeschein (Unbenoteter Teilnahmeschein für die Bearbeitung von Studienarbeiten; diese sind Elemente einer "großen Studienarbeit" in Form einer Bauvorlage für ein individuelles Gebäude).

Verwendbarkeit

Dieses Modul liefert die wesentlichen Grundlagen für:

- "Baukonstruktion und Bauphysik"
- alle konstruktiven Fächer
- Statik

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester.

Als Startzeitpunkt ist das Herbsttrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Grundlagen des Baubetriebs	2509

Zuordnung zum Studiengang B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015 B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. Jürgen Schwarz

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
180	84	96	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
25091	VL	Baubetrieb	Pflicht	2.00
25092	VL	Grundbegriffe Recht und Wirtschaft	Pflicht	2.00
25093	VL	Kalkulation und Arbeitssicherheit	Pflicht	1.00
Summe (Pflicht und Wahlpflicht)			5.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden erwerben Grundkenntnisse für den Bauingenieur in der Projektentwicklung. Sie können selbstständig ein Projekt auf der Basis eines Entwurfes planen und abwickeln. Dabei berücksichtigen sie Termine, Kosten und einzuhaltende Verträge. Die Studierenden können spezielle Bauabläufe bewerten und optimieren.

Inhalt

Baubetrieb (Prof. Schwarz)

- Überblick über den baubetrieblichen Projektablauf
- Arbeitsvorbereitung als Aufgabe des Bauingenieurs
- · Organisation einer Baustelle
- Bauverfahrenstechnik: Allgemeine Grundsätze
- Bauverfahrenstechnik im Erdbau und im Spezialtiefbau
- Bauverfahrenstechnik im Betonbau
- Baustelleneinrichtung: Grundlagen, Einflüsse, Dimensionierung
- Leistungsermittlung, Aufwandswerte
- Terminplanung: Balkenplan, Weg-Zeit-Diagramm

Grundbegriffe Recht und Wirtschaft (Prof. Schwarz)

- Grundlagen: Übersicht über die Rechtsordnung
- Besonderheiten des Baurechts innerhalb der Rechtsvorschriften
- · Bauvertragsrecht in Deutschland
- Ingenieurvertragsrecht in Deutschland
- Übersicht über Volkswirtschafts- und Betriebswirtschaftslehre
- Besonderheiten der Baubetriebswirtschaftslehre
- Grundlagen der Buchführung und Bilanzierung
- Grundlagen öffentliches Baurecht

Kalkulation und Arbeitssicherheit (Prof. Schwarz)

- Ermittlung der Einzelkosten der Teilleistungen EKT
- Umlageverfahren
- Nachkalkulation
- Arbeitssicherheit im Baubetrieb

Für alle Veranstaltungen: Zur Nachbearbeitung des Vorlesungsstoffes und zur Prüfungsvorbereitung werden vorlesungsbegleitend Übungsaufgaben verteilt.

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

Dieses Modul liefert die wesentlichen Grundlagen für die weiteren Veranstaltungen im Baubetrieb und Projektmanagement.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester.

Als Startzeitpunkt ist das Herbsttrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Baukonstruktion und Bauphysik	2894

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2011
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
DrIng. Geralt Siebert	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
300	144	156	10

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
28941	VL	Bauphysik I	Pflicht	2.00
28942	UE	Bauphysik I	Pflicht	1.00
28943	VL	Baukonstruktion II	Pflicht	1.00
28944	UE	Baukonstruktion II	Pflicht	0.50
28945	VL	Bauphysik II	Pflicht	1.00
28946	UE	Bauphysik II	Pflicht	0.50
28947	VL	Baukonstruktion III	Pflicht	4.00
289481	UE	Baukonstruktion III	Pflicht	1.00
289491	VÜ	Baukonstruktion III	Pflicht	1.00
Summe (Pflicht und Wahlpflicht)			12.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Kenntnisse aus dem Modul "Entwerfen und Konstruieren"

Qualifikationsziele

Die Studierenden können nach erfolgreichem Abschluss des Moduls selbständig Baukonstruktionen entwerfen und konstruieren. Darüber hinaus sind sie befähigt, bauphysikalische Nachweise zu erstellen und Mauerwerksbauteile selbständig zu bemessen. Weiterhin werden durch dieses Modul Voraussetzungen für das Erstellen von Energieausweisen nach der Energiesparverordnungen (EnEV) geschaffen. Die Studierenden erwerben das Verständnis, dass bei Entwurf und Konstruktion auch Anforderungen seitens der Bauphysik zu berücksichtigen sind. Durch Bearbeitung der Studienarbeiten werden weitere Teile einer Bauvorlage (Entwurfsplan, Positionsplan, Bemessung Mauerwerk, Nachweis Wärmeschutz, Feuchteschutz,...) erarbeitet, die als Elemente einer größeren Aufgabenstellung (Bauvorlage für ein individuelles Musterhaus) das Verständnis für Interaktion der einzelnen Teildisziplinen im Studium und der späteren Tätigkeit als Ingenieur fördern.

Inhalt

In diesem Modul erhalten die Studierenden eine grundlegende Einführung

- in die Aussteifung von Bauwerken
- in die Grundlagen der einzelnen Konstruktionselemente, getrennt nach Baustoffen (Holzbau, Mauerwerksbau, Stahlbau, Metallbau, Betonbau, Stahlbetonbau, Spannbetonbau, Verbundbau, Sonderbauweisen)
- in die Bemessung von Mauerwerk
- in Entwuf und Konstruktion der einzelnen Konstruktionsteile des Hochbaus (von Gründung und Keller über Wände und Decken bis zum Dach sowie Bauelementen wie Balkon, Treppe,...)

Außerdem werden in diesem Modul den Studierenden jeweils gelehrt die physikalischen Grundlagen, baupraktische Umsetzung, Berechnungsverfahren, Regelungen und ihre Anwendung für die Teildisziplinen der Bauphysik

- Wärme
- Feuchte
- Schall
- Brand
- Belichtung und Sonnenschutz
- Klima

Darüber hinaus werden die Interaktionen zwischen Baukonstruktion und Bauphysik dargestellt.

Literatur

Leistungsnachweis

Schriftliche Prüfung 180 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 45 Minuten und ein unbenoteter Teilnahmeschein

(Unbenoteter Teilnahmeschein für die Bearbeitung von Studienarbeiten; diese sind Elemente einer "großen Studienarbeit" in Form einer Bauvorlage für ein individuelles Gebäude)

Verwendbarkeit

Dieses Modul liefert die wesentlichen Grundlagen für:

- Statik
- alle konstruktiven Fächer

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester. Als Startzeitpunkt ist das Wintertrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Baumechanik I	2902

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2013 MLS
B.Sc. Mathematical Engineering 2015 ITKS
B.Sc. Mathematical Engineering 2016
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2015 MECH
B.Sc. Mathematical Engineering 2015
B.Sc. Mathematical Engineering 2011
B.Sc. Mathematical Engineering 2013 ITKS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Mathematical Engineering 2013
B.Sc. Mathematical Engineering 2013 MSB
B.Sc. Mathematical Engineering 2013 MECH
B.Sc. Mathematical Engineering 2015 MLS
B.Sc. Mathematical Engineering 2015 MSB
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. habil. Michael Brünig

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	84	66	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
29021	VL	Baumechanik I	Pflicht	3.00
29022	UE	Baumechanik I	Pflicht	4.00
Summe	(Pflicht u	ind Wahlpflicht)		7.00

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Keine formalen Voraussetzungen.

Qualifikationsziele

Die Studierenden beherrschen den Umgang mit Kräftesystemen und können einfache Tragmodelle in der Baupraxis erkennen. Dadurch werden das Abstraktionsvermögen sowie die Kreativität bei der Lösung von Problemen bei den Studierenden gefördert. Durch systematisches und logisch begründetes Vorgehen können sie zur Lösung einfacher Tragwerksprobleme beitragen. Die selbständige Auflagerberechnung und Schnittgrößenermittlung sowie Darstellung deren Verläufe für einfache, statisch bestimmte Stabtragwerke steht im Vordergrund dieses Moduls. Dabei entwickeln die Studierenden ihre analytischen Fähigkeiten und werden sensibilisiert, die gestellten Aufgaben selbständig unter Eigeninitiative oder auch in Kleingruppen zeitgerecht zu bearbeiten.

Inhalt

Statik starrer Körper (Prof. Brünig)

- Einführung in die Mechanik
- Kräfte und Momente
- Ebene Stabtragwerke
- Auflagerreaktionen
- Schnittgrößen
- Ebene Fachwerke
- Seiltragwerke
- Räumliche Stabtragwerke
- Reibung

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit

Dieses Modul liefert die wesentlichen Grundlagen für:

- Baumechanik II
- Statik
- alle konstruktiven Fächer

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Baumechanik II	2903

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2013 MLS
B.Sc. Mathematical Engineering 2015 ITKS
B.Sc. Mathematical Engineering 2016
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2015 MECH
B.Sc. Mathematical Engineering 2015
B.Sc. Mathematical Engineering 2011
B.Sc. Mathematical Engineering 2013 ITKS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Mathematical Engineering 2013
B.Sc. Mathematical Engineering 2013 MSB
B.Sc. Mathematical Engineering 2013 MECH
B.Sc. Mathematical Engineering 2015 MLS
B.Sc. Mathematical Engineering 2015 MSB
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. habil. Michael Brünig

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	84	66	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
29031	VL	Baumechanik II	Pflicht	3.00
29032	UE	Baumechanik II	Pflicht	4.00
Summe	(Pflicht u	ind Wahlpflicht)		7.00

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Kenntnisse aus dem Modul "Baumechanik I"

Qualifikationsziele

Die Studierenden können sicher Schnittgrößen für kompliziertere, statisch bestimmte Tragstrukturen ermitteln. Eine eigenständige Ermittlung von Flächenwerten für symmetrische und unsymmetrische Querschnitte stellt die Grundlage für die selbständige Spannungsermittlung bei einfachen, ebenen Problemen und für Stabtragwerke dar. Sie beherrschen die Querschnittsbemessung von Stabtragwerken und können selbständige Verformungsberechnungen bei Stäben durchführen. Die Studierenden werden für geometrisch nichtlineare Probleme sensibilisiert und können einfache Stabilitätsprobleme selbst berechnen. Dabei entwickeln die Studierenden ihre analytischen Fähigkeiten und werden sensibilisiert, die gestellten Aufgaben selbständig unter Eigeninitiative oder auch in Kleingruppen zeitgerecht zu bearbeiten.

Inhalt

Theorie elastischer Stabtragwerke (Prof. Brünig)

- Einleitung
- Elastischer Fachwerkstab
- Mehrdimensionaler Spannungs- und Verzerrungszustand
- Hauptspannungen
- Elastisches Stoffgesetz
- Festigkeitshypothesen
- Technische Biegetheorie des geraden Balkens
- Flächenwerte
- Normalspannungen
- Schubspannungen des ebenen Balkens
- Differentialgleichung der Biegelinie des schubstarren Balkens
- Differentialgleichung der Biegelinie des schubsteifen Balkens
- Stabilität zentrisch gedrückter Stäbe
- Räumliche Stabtragwerke
- Normal- und Schubspannungen des räumlichen Balkens

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit

Dieses Modul liefert die wesentlichen Grundlagen für:

- "Baumechanik III"
- Statik
- · alle konstruktiven Fächer

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester. Als Startzeitpunkt ist das Wintertrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Baumechanik III	2904

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2013 MLS
B.Sc. Mathematical Engineering 2015 ITKS
B.Sc. Mathematical Engineering 2016
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2015 MECH
B.Sc. Mathematical Engineering 2015
B.Sc. Mathematical Engineering 2011
B.Sc. Mathematical Engineering 2013 ITKS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Mathematical Engineering 2013
B.Sc. Mathematical Engineering 2013 MSB
B.Sc. Mathematical Engineering 2013 MECH
B.Sc. Mathematical Engineering 2015 MLS
B.Sc. Mathematical Engineering 2015 MSB
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. habil. Michael Brünig

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
29041	VL	Baumechanik III	Pflicht	4.00
29042 UE Baumechanik III Pflicht			2.00	
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen	
	Inhalte gemäß "Baumechanik I und II"	

Qualifikationsziele

Die Studierenden beherrschen die Arbeits- und Energiemethoden zur Bestimmun von Kräften und Verschiebungen. Im Bereich der Baudynamik können die Studierenden selbständig Bewegungsgleichungen bei Massenpunkten für ebene und räumliche Bewegungen und bei starren Körpern für ebene Bewegungen aufstellen und lösen. Sie werden für den Praxisbezug der Baudynamik sensibilisiert. Die Studierenden kennen eine systematische und logisch begründete Methodik bei der Lösung von freien und periodisch fremderregten Schwingungen. Dabei entwickeln die Studierenden ihre analytischen Fähigkeiten und werden sensibilisiert, die gestellten Aufgaben selbständig unter Eigeninitiative oder auch in Kleingruppen zeitgerecht zu bearbeiten.

Inhalt

Arbeit und Energie (Prof. Brünig):

- Definitionen
- Prinzip der virtuellen Arbeiten
- Äußere Arbeit und Formänderungsenergie
- Arbeitssätze

Einführung in die Baudynamik (Prof. Brünig):

- Ebene Bewegung eines Massenpunktes
- Aufstellen von Bewegungsgleichungen für den Massenpunkt
- Freie und gedämpfte Schwingungen
- Energie- und Impulssatz
- Bewegung eines starren K\u00f6rpers
- Erzwungene Schwingungen
- Systeme mit mehreren Freiheitsgrade

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit

Dieses Modul liefert die wesentlichen Grundlagen für:

- Statik
- Dynamik
- Massivbau
- Stahlbau
- Holzbau

Verkehrs- und Wasserwesen

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt ist das Frühjahrstrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Statik 1 - Statik statisch bestimmter Tragwerke	2906

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2013 MLS
B.Sc. Mathematical Engineering 2015 ITKS
B.Sc. Mathematical Engineering 2016
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2015 MECH
B.Sc. Mathematical Engineering 2015
B.Sc. Mathematical Engineering 2011
B.Sc. Mathematical Engineering 2013 ITKS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Mathematical Engineering 2013
B.Sc. Mathematical Engineering 2013 MSB
B.Sc. Mathematical Engineering 2013 MECH
B.Sc. Mathematical Engineering 2015 MLS
B.Sc. Mathematical Engineering 2015 MSB
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r

Dr.-Ing. habil. Norbert Gebbeken

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
29061	VL	Statik 1 - Statik statisch bestimmter Tragwerke	Pflicht	4.00
29062 UE Statik 1 - Statik statisch bestimmter Tragwerke Pflicht			2.00	
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
--------------------------------------	----------------------------

Grundlegendes Verständnis für die
Baumechanik wie sie beispielsweise
in den Modulen "Baumechanik I" und
"Baumechanik II" vermittelt wird.

Qualifikationsziele

Die Studierenden kennen das theoretische Grundkonzept der Baustatik. Durch die überwiegend manuellen Methoden sind seine Fähigkeit zum fehlerfreien Lösen von verschiedenen Aufgaben in der Statik und das "statische Gefühl" für korrekten Kräftefluss, Lastabtragung und Verformungsverhalten geschärft.

Inhalt

Grundlagen der Statik (Prof. Gebbeken):

- Tragwerksformen und Idealisierungen
- grundsätzliche Methoden der Statik
- Dualität von Kraft- und Verschiebungsgrößen

Stabtheorie und mechanisches Modell (Prof. Gebbeken):

- Spannungs-Schnittkraft-Beziehungen
- Werkstoffgesetz und Verzerrungs-Schnittkraft-Beziehungen
- Kinematik starrer Körper, Polpläne
- Prinzip der virtuellen Verrückungen
- Gleichgewichtsbeziehungen und Zustandslinien
- Einflußlinien
- Prinzip der virtuellen Kräfte
- Biegelinie: Differentialgleichung und Omega-Funktion
- Berechnungsverfahren für statisch bestimmte, senkrecht zur Ebene belastete und gekrümmte Tragwerke sowie Seile (Prof. Gebbeken).

Berechnungsverfahren für statisch bestimmte, senkrecht zur Ebene belastete und gekrümmte Tragwerke sowie Seile (Prof. Gebbeken).

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- "Statik II"
- die konstruktiven Fächer Massivbau, Stahlbau und Holzbau

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt ist das Frühjahrstrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Statik 2 - Statik statisch unbestimmter Tragwerke	2907

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2013 MLS
B.Sc. Mathematical Engineering 2015 ITKS
B.Sc. Mathematical Engineering 2016
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2015 MECH
B.Sc. Mathematical Engineering 2015
B.Sc. Mathematical Engineering 2011
B.Sc. Mathematical Engineering 2013 ITKS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Mathematical Engineering 2013
B.Sc. Mathematical Engineering 2013 MSB
B.Sc. Mathematical Engineering 2013 MECH
B.Sc. Mathematical Engineering 2015 MLS
B.Sc. Mathematical Engineering 2015 MSB
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r

Dr.-Ing. habil. Norbert Gebbeken

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
29071	VL	Statik 2 - Statik statisch unbestimmter Tragwerke	Pflicht	4.00
29072	UE	Statik 2 - Statik statisch unbestimmter Tragwerke	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
--------------------------------------	----------------------------

Statik statisch bestimmter Systeme, z.B.
"Statik I" und Kenntnisse der Baumechanik.

Qualifikationsziele

Die Studierenden kennen verschiedene Verfahren zur Schnittgrößenermittlung und Verformungsberechnung an statisch unbestimmten Stabtragwerken infolge aller Anteile des Arbeitssatzes und können diese eigenständig anwenden. Schwerpunkte sind dabei Verfahren zur Handrechnung, um das "Ingenieurgefühl" für den korrekten Kräftefluß, Lastabtragung und Verformungsverhalten zu schärfen. Darüber hinaus lernen die Studierenden Grundlagen numerischer Berechnungsverfahren kennen und können so numerische Berechnungsergebnisse prüfen und kritisch hinterfragen.

Inhalt

Lösungsmöglichkeiten und Berechnungsverfahren für statisch unbestimmte Tragwerke (Schnittkräfte, Verschiebungsgrößen, Biegelinien, Einflußlinien, Steifigkeiten, Flexibilitäten), dabei:

- Kraftgrößenverfahren (KGV)
- Drehwinkelverfahren (DWV)
- Einführung in die Finite-Element-Methode (FEM)

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder Mündliche Prüfung 25 Minuten

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- "Statik III"
- die konstruktiven Fächer Massivbau, Stahlbau und Holzbau

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester.

Als Startzeitpunkt ist das Herbstrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Einführung FEM	3012

Zuordnung zum Studiengang
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
Dr. rer. nat. Sven-Joachim Kimmerle	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
30121	VL	Einführung FEM	Pflicht	4.00
30122	UE	Einführung FEM	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen	
	Programmierkenntnisse in einer beliebigen prozeduralen Programmiersprache. Grundkenntnisse aus der Analysis/ Ingenieurmathematik.	

Qualifikationsziele

Die Studierenden kennen die Grundlagen der Finite-Elemente-Methode. Sie können Näherungslösungen, die mit dieser Methode berechnet worden sind, beurteilen. Die Studierenden sind in der Lage, eigenständig Finite-Elemente-Analysen für einfache Modellprobleme als Handrechnung durchzuführen. Somit sind auch die Grundlagen für die Anwendung der Methode auf komplexere Probleme mit Hilfe kommerzieller Programme gelegt.

Inhalt

Die Methode der finiten Elemente (FEM) zählt heute zu den wichtigsten Berechnungsverfahren im Ingenieurwesen. Es handelt sich dabei um ein Näherungsverfahren zur Lösung von Rand-, Anfangs- und Anfangsrandwertaufgaben gewöhnlicher und partieller Differentialgleichungen (z.B. Gleichungen der Elastostatik, Strömungsmechanik, usw.). Das Modul führt zunächst in die Grundlagen der numerischen Mathematik ein und definiert die wichtigsten Grundbegriffe (exakte

Lösung, analytische Lösung, Näherungslösung, Modellfehler, Rundungsfehler, Approximationsfehler, Gesamtfehler, Darstellungsgenauigkeit auf digitalen Rechenanlagen, Konvergenz). Sodann wird zunächst an eindimensionalen Beispielen (elastische längs- und querbelastete Stäbe, stationäre Advektions-Diffusions-Gleichungen, usw.) die mathematische Modellierung natürlich-technischer Systeme mit Hilfe von Differentialgleichungen erläutert.

Es folgt ein Überblick über die Lösung von Randwertproblemen mit Differenzenverfahren, Verfahren auf Grundlage der Methode der kleinsten Quadrate und vor allen Galerkin-Verfahren für die schwache Formulierung. Als Ansatzfunktionen werden insbesondere stückweise Polynome diskutiert. Die zur Lösung der diskretisierten Probleme erforderlichen Hilfsmittel aus der numerischen linearen Algebra (Gleichungslöser) werden ebenfalls vorgestellt. Hinweise zur a-priori- und a-posteriori-Genauigkeitsabschätzung der Näherungslösungen werden gegeben. Den Abschluss des Moduls bildet eine Einführung in die numerische Lösung zweidimensionaler elliptischer Probleme (Membran/Wärmeleitung, Scheibe) mit stückweise linearen Ansätzen auf Dreieckselementen.

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

alle Lehrveranstaltungen, insbesondere Statik, konstruktive Fächer, Hydromechanik Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester.

Als Startzeitpunkt ist das Wintertrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Geologie, Werkstoffe und Bauchemie	3013

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2011
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. Karl-Christian Thienel

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
210	96	114	7

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
30131	VL	Grundlagen der Geologie	Pflicht	2.00
30132	Р	Chemie und Eigenschaften mineralischer Baustoffe	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)			4.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Inhalte gemäß dem Modul "Werkstoffe und Bauchemie"

Qualifikationsziele

Die Studierenden werden in die Lage versetzt, geologische Grundkenntnisse anzuwenden. Die Studierenden können nach Beendigung des Moduls nicht nur selbständig Gesteine unterscheiden, sondern sie kennen auch deren Herkunft und Entstehung.

Die Studierenden erwerben Kompetenzen mineralische Baustoffe aufgrund ihrer maßgebenden Eigenschaften beurteilen zu können. Sie erhalten einen Überblick über die Eigenschaften bituminöser Baustoffe und sind in Grundzügen über das Baustoffrecycling informiert. Die Studierenden werden in die Lage versetzt, den geeigneten Werkstoff für die jeweilige Bauaufgabe, auch unter Berücksichtigung der Umgebungsbedingungen, festzulegen.

Inhalt

Grundlagen der Geologie (Dr. rer. nat. Murr):

- Allgemeine Geologie; Entwicklungsgeschichte der Erde, Geodynamik und Plattentekthonik; Gebirgsbildung; Historische Geologie; Mineralogie; Petrographie der Magmatite; Exogene Vorgänge und Kräfte; Diagenese und Einteilung der Sedimentgesteine; Gesteinsmetamorphose
- Angewandte Geologie; Geologische Karten; Ingenieurgeologie; Hydrogeologie

Chemie und Eigenschaften mineralischer Baustoffe (Prof. Thienel)

- Chemie mineralischer Baustoffe, Mineralische Bindemittel; Künstliche Steine; Mörtel; Gesteinskörnung
- Begriffe und Einteilung; Expositionsklassen; Frischbeton Zusammensetzung, Verarbeitung und Konsistenz, Eigenschaften und Prüfung; Betonzusatzmittel; Junger Beton; Nachbehandlung; Einflüsse auf die Festigkeit; Verformungseigenschaften; Dauerhafitgkeit; Betonkorrosion; Leichtbeton; Siebanalyse; Prüfverfahren
- Glas; Recycling organischer, metallischer und meneraslischer Baustoffe

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 35 Minuten und ein unbenoteter Teilnahmeschein für die Exkursion.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Massivbau
- Stahlbau
- Holzbau
- Hoch- und Ingenieurbau
- Baubetrieb
- Tragwerkaplanung
- Umwelttechnik
- Straßenbau
- Glasbau
- Bauphysik

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt ist das Frühjahrstrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Grundlagen der Geodäsie	3019

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2011
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
DrIng. Otto Heunecke	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
30191	VL	Grundlagen der Geodäsie	Pflicht	3.00
30192	UE	Grundlagen der Geodäsie	Pflicht	3.00
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Allgemeine Grundkenntnisse in Mathematik und Physik

Qualifikationsziele

Die Studierenden des Bauingenieurwesens und der Umweltwissenschaften erhalten in dem Modul einen Überblick über das Fach Geodäsie. Sie können einfache Vermessungen im Team selbst durchführen, vermessungstechnische Erfordernisse beurteilen und wissen, Vermessungsergebnisse zu interpretieren. Die Studierenden sind kompetente Gesprächspartner für Vermessungsingenieure bei der Planung von Bauvorhaben und ihrer Umsetzung.

Anhand der Messübungen wird der Praxisbezug der Vorlesungsinhalte exemparisch vermittelt. In den Messgruppen werden - neben den fachlichen Aspekten - Selbstmanagement und organisatorische Fähigkeiten der Studierenden gefordert und gefördert.

Inhalt

Die Vorlesung (Prof. Heunecke) vermittelt folgende Inhalte:

- Einführung "Grundlagen der Geodäsie"
- Erd- und Landesvermessung
- Einfache Lagevermessungen
- Nivellement
- Messungen mit dem Theodolit
- Elektrooptische Tachymetrie
- GNSS Positionierung
- · Räumliche und ebene Koordinatensysteme
- Ebene Koordinatenberechungen
- Topographische Geländeaufnahme
- Flächen- und Mengenermittlung
- Trassierung und Absteckung
- · Statistik und Ausgleichungsrechnung
- Geoinformationssysteme
- · Photogrammetrie und Fernerkundung
- Öffentliches Vermessungswesen

Zu ausgewählten Kapiteln der Vorlesung werden Hausübungen ausgeteilt, anhand derer die gezielte Nachbearbeitung der Vorlesungsinhalte ermöglicht wird. Inhalte der Messübungen (in Kleingruppen) sind:

- Orthogonalaufnahme und geometrisches Nivellement
- Umgang mit dem Tachymeter
- Freie Stationierung
- Tachymeterzug, RTK-GPS
- Polaraufnahme, CAD gestützte Planerstellung
- Absteckung eines Gebäudes und einer Trasse

Die Messübungen (Betreuung durch Wiss. Mitarbeiter, Institut für Geodäsie) finden als Feldübungen auf dem Campus der Universität statt und bauen aufeinander auf. Eine selbständige Vorbereitung der Gruppen auf die Übungen wird erwartet. Die Auswertungen zu den Messübungen erfolgen gruppenweise.

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder

Mündliche Prüfung 30 Minuten

Hierzu sind keine Hilfsmittel - außer Taschenrechner - erlaubt

Verwendbarkeit

Dieses Modul liefert Grundlagen für weitere Geodäsie-Module und Baubetrieb.

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester. Als Startzeitpunkt ist das Wintertrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Werkstoffe und Bauchemie	3021

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2011
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. Karl-Christian Thienel

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
30211	VL	Einführung in die Bauchemie, Stoffkennwerte und metallische Werkstoffe	Pflicht	2.00
30212	VL	Chemie und Eigenschaften organischer Baustoffe	Pflicht	2.00
30213	Р	Stoffkennwerte, metallische und organische Baustoffe	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Keine formalen Voraussetzungen

Qualifikationsziele

Die Studierenden erhalten einen Überblick über die chemischen und physikalischen Grundlagen des Werkstoffverhaltens. Sie erwerben Kompetenzen, organische und metallische Baustoffe aufgrund ihrer maßgebenden Eigenschaften beurteilen zu können. Die Studierenden werden in die Lage versetzt, den geeigneten Werkstoff für die jeweilige Bauaufgabe, auch unter Berücksichtigung der Umgebungsbedingungen, festlegen zu können.

Inhalt

Einführung in die Bauchemie - Allgemeine Grundlagen - Stoffkennwerte (Prof. Thienel):

- Allgemein chemische Grundlagen; Bindungsarten und Wertigkeiten; Aggregatzustände; chemische Reaktionen; Chemie und Umwelt
- Bautechnische Regeln und Bestimmungen; Masse, Dichte, Porosität; Verhalten poröser Feststoffe gegenüber Feuchtigkeit; Bauphysikalische Eigenschaften; Formänderung; Festigkeit; Messtechnik; Materialprüfung
- Chemie metallischer Werkstoffe; Stahlherstellung; Eigenschaften metallischer Werkstoffe; Schweißen; Schrauben; Nichteisenmetalle; Metallkorrosion

Chemie und Eigenschaften organischer Baustoffe (Prof. Thienel):

- Chemie organischer Baustoffe; Aufbau der Kunststoffe, Eigenschaften und Prüfung; Halbzeuge und Fertigprodukte, am Bau erhärtende Kunststoffe
- Aufbau des Holzes, physikalische Eigenschaften; Holzwerkstoffe; Holzschädlinge; Holzschutz
- · Chemie und Eigenschaften von Bitumen; bituminöse Werkstoffe

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten und ein unbenoteter Teilnahmeschein für die Exkursion.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Grundbau
- Wasserbau
- Umwelttechnik
- Verkehrswesen und Straßenbau
- Hydrologie
- Massivbau
- Stahlbau
- Holzbau
- Hoch- und Ingenieurbau
- Baubetrieb

Tragwerksplanung

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester.

Als Startzeitpunkt ist das Herbsttrimester im 1. Studienjahr vorgesehen.

Modulname	Modulnummer
Siedlungswasserwirtschaft und Abfalltechnik	1404

Zuordnung zum Studiengang
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. habil. Steffen Krause

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14041	VL	Siedlungswasserwirtschaft	Pflicht	2.00
14042	UE	Siedlungswasserwirtschaft	Pflicht	1.00
14043	VL	Abfallwirtschaft	Pflicht	2.00
14044	UE	Abfallwirtschaft	Pflicht	1.00
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden erlernen in diesem Modul vertiefte Grundlagen und die Bemessung der mechanischen und biologischen Abwasserreinigung sowie Planung, Bau und Instandhaltung von Abwasserleitungen und können die Berechnungen eigenständig durchführen. Verfahren und Grundsätze der Abfallverwertung, -behandlung und - beseitigung werden vermittelt. Anhand von Beispielen werden die Studierenden auf das Berufsleben vorbereitet.

Inhalt

Siedlungswasserwirtschaft (PD Dr. Krause, S. Faltermaier):

- Anforderungen an die Abwasserreinigung
- Ziele des Gewässerschutzes
- Pflanzenkläranlagen
- Abwasserteiche
- Belebungsverfahren Nährstoffelimitation
- Nachklärbeckenbemessung
- Nachklärbeckenkonstruktion
- Regenwasserbehandlung, Regenwassernutzung

- Bau von Abwasserleitungen
- Sanierung von Abwasserleitungen

Abfallwirtschaft (S. Rödel):

- Einführung, Abfallarten, -mengen
- Abfallanalysen, Abfallzusammensetzung
- Abfallsammlung und -Transport
- Abfallwirtschaftliche Vorgaben und Konzepte
- Klärschlammanfall und -behandlung
- Abfallaufbereitung f
 ür die Verwertung
- Baurestmassen
- · Containerinseln und Wertstoffhöfe
- Stoffstrombilanzierung
- Kompostierung
- Restmülldeponie

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion stattfinden.

Literatur

Leistungsnachweis

Schriftliche Prüfung 100 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester. Als Startzeitpunkt ist das Wintertrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Verkehrstechnik, -simulation und -leitsysteme	1405

Zuordnung zum Studiengang	
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015	
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016	

Modulverantwortliche/r

Dr.-Ing. Klaus Bogenberger

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
180	96	84	6

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14055	VL	Verkehrstechnik	Pflicht	2.00
14056	UE	Verkehrstechnik	Pflicht	1.00
14057	VL	Verkehrssimulation und -leitsysteme	Pflicht	2.00
14058	Р	Verkehrssimulation und -leitsysteme	Pflicht	3.00
Summe (Pflicht und Wahlpflicht)			8.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden werden befähigt, die in Vorlesungen, Übungen und Praktika vermittelten Inhalte in der Planungs- und Verkehrstechnikpraxis selbständig und sicher anzuwenden. Dazu gehören z.B. der Entwurf von Knotenpunkten mit und ohne LSA und die Simulation von Verkehrssystemen und Verkehrsflüssen. Sie erlangen mit Hilfe von Übungen weitergehende Fähigkeiten und Fertigkeiten zur Durchführung von projektbezogenen Verfahren und Methoden.

Inhalt

Verkehrstechnik (Prof. Bogenberger) - FT

- Verkehrstheorie (lokale und momentane Messungen, Verkehrsdichte, Verkehrsstärke ...)
- Verkehrsstatistik (Ankunftsverteilung, Zeitlückenverteilung)
- Fundamentaldiagramm, Verkehrsablauf (Zeit-Weg-Diagramm)
- Straßenverkehrstechnik, Bemessung von Verkehrsanlagen (Knoten ohne LSA, Kreisverkehr, freie Strecke, Einfahrt)
- Grundlagen der LSA-Steuerung, Grüne Welle

- Vertiefung der Verkehrsstatistik (z.B. ARIMA-Modelle)
- Zeit-Weg-Diagramme, Contourplots, verkehrsadaptive Interpolation
- Stochastische Kapazität, kumulative Analysen
- Warteprozesse, deterministische und stochastische Wartemodelle
- Verkehrsabläufe (Fundamentaldiagramm, Drei- bzw. Fünfphasen-Theorie des Verkehrsablaufs), Stoßwellentheorie, kinematische Wellen (Lighthill/Witham)
- Verkehrszustandsschätzung (Netze und Knotenpunkte), Verkehrsprognosemodelle

Verkehrssimulation und -leitsysteme (Prof. Bogenberger) - FT

- Einführung in die Regelungstechnik, Steuerungsverfahren
- Verkehrssteuerung innerorts (Festzeitsteuerung, verkehrsabhängige und adaptive Lichtsignalsteuerung, Parkleitsysteme)
- Grüne Welle
- Kollektive und individuelle Verkehrsleitsysteme außerorts (Streckenbeeinflussung, Netzbeeinflussung, Zuflussregelung, Integrierte Systeme)
- Pre-, On-, Post-Trip-Informationssysteme
- Navigationssysteme, Lichtsignalsteuerung, Bemessung einer verkehrsabhängigen LSA
- Parkleitsysteme
- Mautsysteme
- Anlagentechnik (Datenerfassung (Sensorik), Kommunikation, Aktorik, Zentrale Einrichtungen (Verkehrsrechnerzentrale))
- Verkehrssimulation (Bogenberger)
- Simulation der Verkehrserzeugung
- Simulation der Verkehrsverteilung
- Simulation der Verkehrsmittelwahl
- Verkehrsumlegung
- VISUM
- (sub-)mikroskopische Verkehrssimulation (VISSIM, AIMSUN)
- Fahrzeugfolgemodelle, Spurwechselmodelle
- mesoskopische Verkehrsflusssimulation
- · makroskopische Verkehrsflusssimulation

ite	ra	•	ır
пе	-	ш	

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert dauer 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Umweltrecht, -planung und -prüfung	1406

Zuordnung zum Studiengang
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
DrIng. Christian Jacoby	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
180	84	96	6

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14061	VL	Umweltrecht und Umweltprüfung	Pflicht	2.00
14062	UE	Umweltrecht und Umweltprüfung	Pflicht	1.00
14063	VL	Lärmschutz, Naturschutz und Umweltplanung	Pflicht	3.00
14064	UE	Lärmschutz, Naturschutz und Umweltplanung Pfli		1.00
Summe (Pflicht und Wahlpflicht)			7.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden erwerben weiterführende Kenntnisse, die in der Planungs- und Baupraxis, insbesondere im Verkehrswesen und im Umweltbezug benötigt werden. Dazu gehören Grundlagen des Umweltrechts und der Umweltprüfung von Planungen und Projekten im Bauwesen. Des Weiteren werden Kenntnisse über den Naturschutz und die Umweltplanung sowie über den Lärmschutz in den Anwendungsfeldern des Verkehrswesens und der Raumplanung vermittelt.

Inhalt

Umweltrecht und Umweltprüfung (Prof. Jacoby/Prof. Bardenhagen)

Umweltrecht

- Umweltverfassungsrecht
- Allgemeines Umweltverwaltungsrecht

- Besonderes Umweltverwaltungsrecht (inbes. Naturschutz-, Bodenschutz-, Wasser-, Immissionsschutz-, Atom-, Kreislaufwirtschafts- und Abfallrecht)
- Umweltstrafrecht
- Umweltprivatrecht

Umweltprüfung

- Umweltverträglichkeitsprüfung (UVP) für Projekte
- Strategische Umweltprüfung (SUP) für Programme und Pläne
- Verträglichkeitsprüfung nach Flora-Fauna-Habitat-Richtlinie
- Umweltprüfungen in der Verkehrsplanung
- Umweltprüfungen in der Regionalplanung
- Umweltprüfungen in der Bauleitplanung
- Umweltprüfungen in der wasserwirtschaftlichen Planung

Lärmschutz, Naturschutz und Umweltplanung (Prof. Jacoby/Dr. Kienlein)

Lärmschutz an Straßen

- Grundlagen zur Schallmessung und -beurteilung
- Berechnung von Emissionspegeln
- Berechnung von Beurteilungspegeln
- · Grenz- und Richtwerte
- Lärmschutzmaßnahmen

Naturschutz

- Ziele und Grundsätze des Naturschutzes
- Spezieller Arten- und Biotopschutz
- Geschützte Gebiete
- Naturschutzrechtliche Eingriffsregelung
- Naturschutzmanagemet und Kulturlandschaftsentwicklung

Umweltplanung

- Landschaftsplanung
- Luftreinhalteplanung und Lärmaktionsplanung
- Planungen zur Land- und Forstwirtschaft
- Hochwasserschutzplanung

Planungen zur Energieversorgung und zum Klimaschutz

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Verkehrsströme	2941

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2013 MLS
B.Sc. Mathematical Engineering 2015 ITKS
B.Sc. Mathematical Engineering 2016
B.Sc. Mathematical Engineering 2015 MECH
B.Sc. Mathematical Engineering 2015
B.Sc. Mathematical Engineering 2013 ITKS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Mathematical Engineering 2013
B.Sc. Mathematical Engineering 2013 MSB
B.Sc. Mathematical Engineering 2013 MECH
B.Sc. Mathematical Engineering 2015 MLS
B.Sc. Mathematical Engineering 2015 MSB
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r

Dr.-Ing. Klaus Bogenberger

Workload in (h) Präsenzzeit	in (h) Selbststudiun	n in (h) ECTS-Punkte
150	60	90	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14055	VL	Verkehrstechnik	Pflicht	2.00
14056	UE	Verkehrstechnik	Pflicht	1.00
14057	VL	Verkehrssimulation und -leitsysteme	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)			5.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden werden befähigt, die in Vorlesungen, Übungen und Praktika vermittelten Inhalte in der Planungs- und Baupraxis selbstständig und sicher anzuwenden. Dazu gehören der Entwurf von Knoten mit und ohne LSA sowie die Simulation von

Verkehrsflüssen.

Inhalt

Verkehrstechnik

- Verkehrstheorie (lokale und momentane Messungen, Verkehrsdichte, Verkehrsstärke ...)
- und Verkehrsstatistik (Ankunftsverteilung, Zeitlückenverteilung)
- Fundamentaldiagramm, Verkehrsablauf (Zeit-Weg-Diagramm)
- Straßenverkehrstechnik, Bemessung von Verkehrsanlagen (Knoten ohne LSA, Kreisverkehr, freie Strecke, Einfahrt)
- Grundlagen der LSA-Steuerung, Grüne Welle
- Vertiefung der Verkehrsstatistik (z.B. ARIMA-Modelle)
- Zeit-Weg-Diagramme, Contourplots, verkehrsadaptive Interpolation
- Stochastische Kapazität, Kumulative Analysen
- Warteprozesse, deterministische und stochastische Wartemodelle
- Verkehrsabläufe (Fundamentaldiagramm, Drei- bzw. Fünfphasen-Theorie des Verkehrsablaufs), Stoßwellentheorie, Kinematische Wellen (Lighthill/Witham)
- Verkehrszustandsschätzung (Netze und Knotenpunkte), Verkehrsprognosemodelle
- Verkehrssicherheit
- Lichtsignalsteuerung, Bemessung einer verkehrsabhängigen LSA

Verkehrssimulation

- Simulation der Verkehrserzeugung
- Simulation der Verkehrsverteilung
- Simulation der Verkehrsmittelwahl
- Verkehrsumlegung
- VISUM
- (sub-)mikroskopische Verkehrssimulation (VISSIM, AIMSUN)
- Fahrzeugfolgemodelle, Spurwechselmodelle
- mesoskopische Verkehrsflusssimulation
- makroskopische Verkehrsflusssimulation, zellulare Automaten

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Min. oder mündliche Prüfung 30 Min.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jeweils im Frühjahrstrimester.

Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.

Das Modul stimmt in Teilen mit dem Modul 1405 "Verkehrstechnik, -simulation und - leitsysteme" überein, so dass es im Studium nicht zusammen mit diesem Modul belegt werden kann.

Modulname	Modulnummer
Interdisziplinäres Projekt UI	3023

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2011
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. Christian Jacoby

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	25	125	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
30231	VÜ	Interdisziplinäres Projekt Umwelt- und Infrastruktur	Pflicht	5.00
Summe (Pflicht und Wahlpflicht)			5.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Bereichen des Wasserwesens bzw. der Raumplanung und des Verkehrswesens entsprechend den zuvor gehörten Modulen vorausgesetzt.

Qualifikationsziele

Durch die große Bauingenieurexkursion erhalten die Studierenden einen Einblick in die Baubläufe von Großbaustellen sowie die entsprechende Bauplanung und das Baumanagement in Behörden und Ingenieurbüros. Sie erkennen am Beispiel ausgewählter Bauprojekte wesentliche fachliche Zusammenhänge der einzelnen Disziplinen des Bauingenieurwesens und der Umweltwissenschaften. Die Studierenden werden auch für mögliche rechtliche, ökologische und organisatorische Probleme bei der praktischen Umsetzung eines Bauvorhabens sensibilisiert.

In der Studienarbeit sollen die Studierenden sowohl die Umsetzung des erlernten Wissens, als auch Lösungsvorschläge für neue Fragestellungen erarbeiten. Dabei soll auch Erfahrung in der Zusammenarbeit und Organisation im Team mit anderen Ausbildungsrichtungen gesammelt werden.

Die Studierenden erwerben Kenntnisse über Methoden zur Lösung komplexer Analyse-, Planungs- und Entwurfsaufgaben im Bereich des Wasserwesens und der Geotechnik oder der Raumplanung und des Verkehrswesens mit integrierter Umweltprüfung. Anhand ausgewählter Praxisbeispiele erlernen sie Fähigkeiten und Fertigkeiten der Methodenanwendung in Teamarbeit.

Inhalt

Große Bauingenieurexkursion als 5-tägige Exkursion

Bearbeitung überschaubarer Projektbeispiele aus der Praxis mit integrierten Analysen und Planungen in den Bereichen Verkehrswesen und Raumplanung oder Wasserwesen unter Einbeziehung der Geotechnik und weiterer Umweltbelange wie z.B.

- Planung einer Umgehungsstraße unter Berücksichtigung der Siedlungsentwicklung und Umweltbelange
- Planung eines Wohn-, Gewerbe- oder Sondergebietes mit Verkehrserschließung
- Stadtumbau mit Optimierung von Verkehrsnetzen und -knoten

Bei der Erstellung der Studienarbeit wird eine Bearbeitung im Team bevorzugt.

Verantwortlich sind je nach Themenstellung die Professoren und wiss. Mitarbeiter des Instituts für Verkehrswesen und Raumplanung oder des Instituts für Wasserwesen mit ergänzender Betreuung des Instituts für Bodenmechanik und Grundbau sowie je nach Bedarf weiterer Institute der Universität.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Literatur

Leistungsnachweis

Unbenoteter Teilnahmeschein für die gesamte 5-tägige Exkursion.

Notenschein für Studienarbeit.

Verwendbarkeit

Vorbereitung einer Bachelorarbeit

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils in der vorlesungsfreien Zeit des Frühjahrstrimesters.

Als Startzeitpunkt ist die vorlesungsfreie Zeit im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Stahl- und Holzbau	1401

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2016
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
Dr. techn. Andreas Taras	

Workloa	ad in (h) P	räsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
18	30	96	84	6

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14011	VL	Stahlbau 1 / Holzbau 1	Pflicht	2.00
14012	UE	Stahlbau 1 / Holzbau 1	Pflicht	2.00
14013	VL	Stahlbau 2 / Holzbau 2	Pflicht	2.00
14014	UE	Stahlbau 2 / Holzbau 2	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)			8.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Für eine erfolgreiche Teilnahme werden die Lehrinhalte des Moduls Grundlagen des Konstruktiven Ingenieurbaus vorausgesetzt.

Qualifikationsziele

Es werden die Grundlagen des Konstruierens im Stahl- und Holzbau erlernt und darauf aufbauend Methoden zur Sicherstellung der Trag- und Gebrauchstauglichkeit in diesen Bauweisen dargestellt. Die Studierenden sollen die theoretischen Grundlagen und Konstruktionsprinzipien des Stahlbaus und Holzbaus vertiefen und erweitern. Sie werden die Entwurfskriterien von Hochbaukonstruktionen und einfacher Brückentragwerke kennen lernen und über Maßnahmen zur Gewährleistung der Tragsicherheit, Gebrauchstauglichkeit und Dauerhaftigkeit informiert. Anhand praktischer Beispiele erlernen sie die Vorgehensweise bei der Lösung von konstruktiven Detailpunkten (Anschlüsse, Auflagerstellen) und lernen die Bedeutung der Tragwerksverformungen und der Stabilität bei diesen Leichtbauweisen kennen.

Inhalt

Es werden - aufbauend auf die Inhalte der Vorlesung Grundlagen des Konstruktiven Ingenieurbaus - im Modul Stahl- und Holzbau die Hintergründe und die praktische Anwendung der Nachweiskonzepte für Tragelemente aus Stahl und Holz dargestellt.

Fertigungsbedingte Randbedingungen und materialbedingte Unterschiede bei der Wahl der Bauteildimensionen und Anschlusslösungen werden betont. Die Prinzipien der Modellbildung zum Nachweis der Tragsicherheit, Dauerhaftigkeit und Gebrauchstauglichkeit werden aufgezeigt. Die folgenden Themenschwerpunkte werden behandelt:

- Vertiefende Darstellung der relevanten Materialeigenschaften von Stahl und Holz
- Tragfähigkeit und Verformbarkeit von Querschnitten: plastische und elastische Grenzzustände
- Verbindungsmittel
- Einfache Anschlüsse und Knoten: Modellbildung und Nachweisführung
- Stabilität von Bauteilen und Behandlung der Effekte 2. Ordnung bei der Systemberechnung
- Einführung in die Verbundbauweise

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion(Halbtagsexkursion) stattfinden.

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Als Prüfungsvorleistung sind Hausarbeiten im Stahl- und Holzbau anzufertigen.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Massivbau
- Stahlbau/Holzbau

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester.

Als Startzeitpunkt ist das Wintertrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Massivbau	1402

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2016
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
DrIng. Manfred Keuser	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	96	54	5

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14021	VL	Massivbau I	Pflicht	2.00
14022	UE	Massivbau I	Pflicht	2.00
14023	VL	Massivbau II	Pflicht	2.00
14024	UE	Massivbau II	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)			8.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Für eine erfolgreiche Teilnahme werden die Lehrinhalte der Module Grundlagen des Konstruktiven Ingenieurbaus, Baustatik und Werkstoffe des Bauwesens vorausgesetzt.

Qualifikationsziele

Im Modul Massivbau erwerben die Studierenden die Kompetenz, das Tragverhalten von Stahlbetonkonstruktionen, insbesondere im Hinblick auf die Verbundwirkung, Biegung, Querkraft, Torsion, Flächentragwerke, Stabilität (Theorie II. Ordnung) und Gebrauchstauglichkeit zu beurteilen und Bemessungen für alle relevanten Querschnittsformen und Beanspruchungen im Stahlbetonbau durchzuführen.

Inhalt

Massivbau (Prof. Keuser):

Nach einem historischen Überblick wird das Sicherheitskonzept, insbesondere die Methode der Teilsicherheitsbeiwerte, detailliert behandelt. Beim Materialverhalten wird der Schwerpunkt auf die Verbundwirkung gelegt. Die Biegebemessung wird vertiefend behandelt. Hierauf aufbauend werden vertiefte Kenntnisse in den Bereichen Schubbemessung (Querkraft, Torsion), Fachwerkmodelle, Flächentragwerke, Stabilität und Theorie II. Ordnung vermittelt. Ergänzend werden

die Gebrauchstauglichkeitsnachweise behandelt und es wird eine Einführung in den Spannbeton gegeben.

Die in der Vorlesung vermittelten Inhalte werden in Übungen an hierauf abgestimmten Beispielen angewandt. Das Lernziel dieses Moduls ist die Vermittlung umfassender Kenntnisse zur Sicherheitstheorie, zum Tragverhalten und zur Bemessung von Stahlbetonkonstruktionen.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Halbtagesexkursion) stattfinden.

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für Vorlesungen der Vertiefungsrichtung Konstruktiver Ingenieurbau im Masterstudium für Bauingenieurwesen und Umweltwissenschaften.

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester.

Als Startzeitpunkt ist das Wintertrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Vertiefte Kapitel der Statik und Numerik	1403

Zuordnung zum Studiengang
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. habil. Norbert Gebbeken

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
180	96	84	6

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14031	VL	Vertiefte Kapitel der Numerik	Pflicht	2.00
14032	UE	Vertiefte Kapitel der Numerik	Pflicht	2.00
14033	VL	Statik III - Ebene dünne Flächentragwerke	Pflicht	2.00
14034	UE	Statik III - Ebene dünne Flächentragwerke	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)			8.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Vertrautheit mit mathematischer Modellierung einfacher physikalischer Probleme; Grundkenntnisse der elementaren Numerik.
	Elementares Verständnis von Spannungen, Verformungen und Schnittkräften. Diese Inhalte werden in den Modulen "Statik I", "Statik II" sowie den Modulen zur Baumechanik vermittelt.

Qualifikationsziele

Die Studierenden verfügen über vertiefte Kenntnisse der in der Mechanik eingesetzten Methoden der numerischen Mathematik. Sie sind in der Lage, eigenständig einfache Algorithmen zur Lösung von Anfangswertproblemen manuell oder über einfache Programmierung durchzuführen. Die Studierenden sind mit dem Themenkomplex der Stabilität von Zeitschrittverfahren vertraut. Sie können numerische Lösungen hinsichtlich qualitativer Richtigkeit und quantitativer Lösungsgenauigkeit beurteilen. Die Studierenden kennen die wichtigsten Eigenschaften parabolischer und hyperbolischer Probleme und geeignete numerische Lösungsverfahren.

Die Studierenden kennen den Spannungszustand und die Gleichgewichtsbeziehungen für ebene dünne Flächentragwerke. Sie können praktische Anwendungsbeispiele von Hand berechnen und so das in Statik I und II entwickelte "Ingenieurgefühl" für Kräftefluss, Lastabtragung und Verformungsverhalten weiter schärfen. Die Studierenden lernen auch einfache Grundlagen numerischer Berechnungsverfahren für Scheiben und Platten kennen, die dann im Master-Modul "Numerische Methoden für ebene Flächentragwerke" weiter entwickelt und angewendet werden.

Inhalt

Vertiefte Kapitel der Numerik (Vertretungs-Prof. Dr. Kimmerle):

Im Modul "Einführung in die Methode der finiten Elemente" wurde die Lösung räumlich ein- und zweidimensionaler, stationärer Probleme behandelt, die durch ein Randwertproblem einer Differentialgleichung beschrieben werden. In der vorliegenden Vorlesung tritt nun die Dimension "Zeit" hinzu. Wir behandeln zunächst Anfangswertaufgaben gewöhnlicher Differentialgleichungen mit einfachen Zeitschrittverfahren und erläutern Begriffe wie Konsistenz, Stabilität und Konvergenz. Auch Systeme gekoppelter Differentialgleichungen werden gelöst. Hinzu treten Ergänzungen aus der numerischen linearen Algebra. Sodann werden partielle Differentialgleichungen des parabolischen und hyperbolischen Typs behandelt und zugehörige numerische Verfahren erläutert.

Am Ende der Vorlesung steht die numerische Lösung von Schwingungsproblemen. Am Beispiel der Longitudinalschwingung eines elastischen Stabes wird die Kombination von räumlicher und zeitlicher Diskretisierung erläutert.

Ebene Flächentragwerke (Prof. Gebbeken):

- Der zweiachsige Spannungszustand und die Gleichgewichtsbeziehungen am ebenen Flächentragwerk
- Aufspaltung in Scheiben und Platten
- Darstellung und Lösung der Scheiben- und Plattengleichung in kartesischen Koordinaten und Polarkoordinaten
- Grundlagen der Finite-Elemente-Methode für Flächentragwerke
- Anwendungen: Bemessung von Platten und Scheiben

 tei	-	ТΙ	ır

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

- alle Lehrveranstaltungen, insbesondere Statik, die konstruktiven Fächer und Hydromechanik
- "Numerische Methoden für ebene Flächentragwerke"
- die konstruktiven Fächer Massivbau, Stahlbau und Holzbau

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Wasser, Boden und Umwelt	1407

Zuordı	nung zum Studiengang
B.Sc.	Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc.	Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
DrIng. habil. Steffen Krause	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
180	72	108	6

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14071	VL	Bodenkunde	Pflicht	1.00
14072	VL	Militärische Altlasten	Pflicht	1.00
14073	VL	Energie und Emissionen	Pflicht	1.00
14074	VL	Luftreinhaltung	Pflicht	1.00
14075	VL	Wasserchemie	Pflicht	1.00
14076	VL	Wasserbiologie	Pflicht	1.00
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden erlernen die Befähigung, bodenkundliche Fragestellungen hinsichtlich der landwirtschaftlichen Bewässerung sowie Versalzungs- und Erosionsproblemen zu analysieren und zu bewerten. Die Studierenden erwerben das Verständnis für die Erkundung, Sicherung und Sanierung militärischer Altlasten einschließlich der dazugehörigen Rechtsgrundlagen. Zudem erlernen sie die Grundlagen der Chemie mit engem Bezug zur Wasserwirtschaft und erhalten grundlegende Kenntnisse über Arten der Energieerzeugung und Quellen von Luftverunreinigung sowie Maßnahmen zur Luftreinhaltung.

Inhalt

Bodenkunde (Dr. Grashey-Jansen):

- Bodenwasser, ungesättigte Bodenwasserbewegung
- Bodenversalzung, Dränung
- Bodendegeneration & Bodenschutz Regionale und globale Analysen
- Bodenerosion (Bodenabtragsgleichung)

Bewässerungsmethoden

Militärische Altlasten (Prof. Boley/Prof. Börger)

- Vorschriften, technische Regelwerke und Grenzwerte
- Entstehung und Ausbreitung von militärischen Altlasten
- Sicherung und Sanierung von militärischen Altlasten
- Militärische Altlasten im Infrastruktureinsatz
- Umweltschonender Umgang und Beseitigung von Kampfmitteln

Energie und Emissionen (Prof. Weyh):

- Bedeutung der Energie
- Wie wird Energie heute erzeugt? (Kohlekraftwerk, Gasturbinen, Dampfturbinen, Nuklearkraftwerke Abgase, Reinigung, etc.)
- Elektrische Energieerzeugung und Verteilung (Generator Hochspannung, 3phasen Strom, UCPE Netz, Hochspannungsgleichstromübertragung)
- Regenerative Energien (PV, Wind, Bio, Hydro, Herstellungskosten, -emissionen, Energy Paybacktime, etc.)
- Energiespeicher
- Energieszenarien/Umweltszenarien

Luftreinhaltung (Dr. Schlachta und Dr. Teichmann):

- Natürliche Quellen von Luftverunreinigungen, Quellengruppen von anthropogenen Luftverunreinigungen
- Technische Maßnahmen zur Luftreinhaltung an ausgewählten Beispielen
- Gesetzliche Grundlagen zur Luftreinhaltung
- Einflussgrößen auf die Immission
- Wirkungen von Luftverunreinigungen

Wasserchemie (PD Dr. Krause):

- Atommodell, Bindungsformen, Reaktionen und Chemisches Gleichgewicht
- Redoxreaktionen, Oxidationszahlen, Löslichkeit und Fällung
- Ionenaustausch und Adsorption
- Organische Chemie, Chemie des Kohlenstoffs
- Herkunft der Inhaltsstoffe des Trinkwassers Ionenbilanz

Wasserbiologie (Dr. Herb)

- Kennzeichen des Lebens, Zellbiologie
- · Ernährung und Stoffwechsel
- Wachstum, Kinetik, Genetik
- Mikrobielle Ökologie
- Trinkwasserbiologie, Abwasserbiologie

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt für das Modul ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Verkehr und Umwelt	1408

Zuordnung zum Studiengang
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
DrIng. Klaus Bogenberger	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
180	96	84	6

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14081	VL	Intelligente Fahrzeuge	Pflicht	2.00
14082	VL	Straßenentwurf II	Pflicht	1.00
14083	Р	Praktikum Straßenbau	Pflicht	2.00
14084	Р	Praktikum Verkehrstechnik	Pflicht	2.00
14085	VL	Energie- und Klimabelange im Verkehrswesen	Pflicht	1.00
Summe (Pflicht und Wahlpflicht)			8.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Den Studierenden werden weiterführende Kenntnisse vermittelt, die in der Planungsund Baupraxis, insbesondere im Verkehrswesen und im Energie-, Klima- und
Umweltbezug benötigt werden. Dazu gehören Kenntnisse über den Einsatz von
intelligenten Fahrzeugsystemen, Entwurfsgrundlagen für den Knotenpunktentwurf und die
Beurteilung der Verkehrssicherheit von Straßen. Die Studierenden werden befähigt, die in
Vorlesungen, Übungen und Praktika vermittelten Inhalte in der Planungs- und Baupraxis
selbstständig und sicher anzuwenden. Dazu gehören auch Grundkenntnisse über die
Prüfung von Asphalt bzw. die Durchführung von Verkehrserhebungen.

Inhalt

Intelligente Fahrzeuge (Prof. Bogenberger) - FT

- Fahrerassistenzsysteme (ACC, ACC StopGo, Spurhaltesysteme)
- Elektroantrieb, Hybridantrieb

- Wasserstoffmotor (Wasserstoffverbrennungsmotor, Wasserstoffgewinnung und Verteilung)
- Moderne Diesel- und Benzinmotoren (Injektoren und Turbolader)
- Getriebe und Fahrwerkregelsysteme (Automatikgetriebe, DSC ...)
- Kooperative Verkehrssysteme
- Navigationssysteme
- Überblick über Forschungshistorie (von den 50er Jahren über PROMETHEUS bis heute)
- Dienstleistungen rund ums Fahrzeug (CarSharing etc.)

Straßenentwurf II (Dr. Kienlein)

- Begriffe und Systematik von Knotenpunkten
- Entwurfskriterien
- Plangleiche Kontenpunkte
- Teilplanfreie Knotenpunktformen
- Planfreie Knotenpunktformen
- Leistungsfähigkeit von Knotenpunktsystemen
- Verkehrssicherheit
- Örtliche Unfalluntersuchung
- Unfalltypenkarten
- Unfallhäufungen
- Unfallanalyse
- Maßnahmenfindung

Praktikum Straßenbau (Dr. Kienlein)

- Asphalttechnologie
- Bindemitteluntersuchungen
- Herstellung von Asphaltprobekörpern (Bestimmung der Marshallstabilität)
- Extraktion von Asphaltproben
- Bestimmung des Zertrümmerungswiderstandes von Gesteinen
- Spurbildungstest
- Straßenzustandserfassung (Quer- und Längsebenheit, Griffigkeitsmessung etc.)

Praktikum Verkehrstechnik (Prof. Bogenberger)

- Planung, Durchführung und Auswertung von Verkehrserhebungen und Befragungen
- Verkehrsbeobachtungen im nmlV, mlV und ÖPNV
- Kordonzählungen
- Messfahrten zur Ermittlung des Treibstoffverbrauchs, Reisezeiten ect.

Energie- und Klimabelange im Verkehrswesen (Prof. Jacoby)

Spezifischer Energieverbrauch der Verkehrsträger

- Treibhausgasemissionen im Verkehrswesen
- Integrierte Energie-, Klima- und Verkehrspolitik
- Energie- und Klimabelange in der Verkehrsplanung
- Energie- und Klimabelange in der Umweltprüfung für Verkehrsprojekte
- Anpassung der Verkehrsinfrastruktur an den Klimawandel

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Materialmodellierung	2908

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2011
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
DrIng. habil. Michael Brünig	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
90	36	54	3

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
29081	VL	Materialmodellierung	Wahlpflicht	2.00
29082	UE	Materialmodellierung	Wahlpflicht	1.00
Summe (Pflicht und Wahlpflicht)			3.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Grundkenntnisse der Baumechanik I und II

Qualifikationsziele

Die Studierenden beherrschen die Modellierung und Simulation von inelastischen Materialverhalten. Sie können geeignete mathematische Modelle zur Simulation eindimensionaler Experimente entwickeln und die zugehörigen Materialparameter identifizieren. Sie kennen unterschiedliche elastische und plastische Werkstoffmodelle und besitzen ein fundiertes Grundlagenwissen zur Ermittlung inelastischer Deformationen von Strukturen aus unterschiedlichen Materialien. Sie sind befähigt, Tragwerke über den elastischen Bereich hinaus zu analysieren und werden sensibilisiert, innovative Problemstellungen unter Ausnutzung der Tragreserven klassischer und neu zu entwickelnder Werkstoffe zu lösen.

Inhalt

Materialmodellierung (Prof. Brünig):

- Eindimensionale Versuche
- Mehraxialer Spannungszustand
- Elastisches Stoffgesetz
- Plastisches Stoffgesetz
- Elastisch-plastisches Stoffgesetz
- Anwendungen

Literatur

Leistungsnachweis

Mündliche Prüfung 20 Minuten oder schriftliche Prüfung 60 Minuten.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Kontinuumsmechanik und Werkstoffmodelle
- Statik
- konstruktive Fächer

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Tragwerksschwingungen und Erschütterungsschutz	2909

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2011
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
DrIng. habil. Norbert Gebbeken	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
90	36	54	3

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
29091	Р	Erschütterungsschutz	Wahlpflicht	1.00
29092	VL	Tragwerksschwingungen	Wahlpflicht	2.00
Summe (Pflicht und Wahlpflicht)			3.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Grundkenntnisse Baumechanik III

Qualifikationsziele

Durch sichere Wahl eines geeigneten Modells bei einfacheren Bauwerksschwingungen können die Studierenden Schwingungsgleichungen sicher aufstellen und lösen. Sie besitzen ein fundiertes Grundlagenwissen über Eigenfrequenzen, Eigenformen, Dämpfungsmechanismen sowie Resonanzerscheinungen. Es wird auf die für die Gebrauchstauglichkeit vn Bauwerken wichtigen Einwirkungen durch Mensch, Maschine und Wind eingegangen. Zukünftigen Bauingenieuren aller Vertiefungsrichtungen werden für baudynamische Probleme sensibilisiert. Es werden Lösungen zur Schwingungsreduktion aufgezeigt. Anhand von Rechenbeispielen wird das tiefere Verständnis geschult. Für Tragwerke, wie z.B. für Brücken, werden bemessungsentscheidende dynamische Einwirkungen vorgestellt und die zugehörige Nachweisführung anhand aktueller Normen erläutert. Exemplarisch für die Methoden der Baudynamik werden Erschütterungen auf ihre Zulässigkeit gemäß DIN 4150-2 beurteilt.

Durch ein Praktikum am lehrstuhleigenen Erschütterungsmesssystem wird die praktische Durchführung vorgestellt und eingeübt.

Inhalt

Tragwerksschwingungen und Erschütterungsschutz (Dr.-Ing. Gollwitzer):

- Schwingungs- und Erschütterungsprobleme in der Baupraxis
- Aufstellen und Lösen von Schwingungsgleichungen
- Schwingungsisolierung
- Amplitudenreduktion durch angekoppeltes Zusatzsystem
- Windinduzierte Schwingungen
- Ermüdungsberechnungen bei Brücken
- Erschütterungsausbreitung
- Auswirkungen auf Menschen und Gebäude
- Einsatz des Erschütterungsmesssystems
- Maßnahmen zur Erschütterungsreduktion

Praktikum Erschütterungsschutz (Dr.-Ing. Gollwitzer):

Im Rahmen des Praktikums wird das institutseigene Erschütterungsmesssystem an realen Bauwerken (z.B. Schwingungsmessungen an einer Brücke) eingesetzt. Die Messungen werden ausgewertet und die Ergebnisse für baupraktische Anwendungen diskutiert.

Literatur

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 20 Minuten.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Baudynamik und Erdbebeningenieurwesen
- Sicherheit der baulichen Infrastruktur
- konstruktive Fächer
- Eisenbahnbau
- Brückenbau

Dauer und Häufigkeit

Modulname: Tragwerksschwingungen und Erschütterungsschutz

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 3. Studienjahr vorgesehen. Das Modul findet nicht in jedem Studienjahr statt.

Modulname	Modulnummer
Anwendungen der Geodäsie	2910

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2011
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
DrIng. Otto Heunecke	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
90	48	42	3

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
29101	VL	Anwendungen der Geodäsie	Wahlpflicht	2.00
29102	UE	Anwendungen der Geodäsie	Wahlpflicht	2.00
Summe	(Pflicht u	ınd Wahlpflicht)		4.00

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	 Allgemeine Kenntnisse in Mathematik und Physik Kenntnisse aus dem Modul "Grundlagen der Geodäsie"

Qualifikationsziele

Die Studierenden lernen das Leistungsspektrum der Geodäsie für das Bauwesen in Bezug auf das Monitoring in methodisch grundlegender, aber auch bereits vertiefter Form kennen und beurteilen. Ein Schwerpunkt liegt in der Vermittlung des fachübergreifenden Ansatzes bei Überwachungsaufgaben. Die meisten derartigen Aufgaben erfordern automatisierte, hochgenaue Instrumente, die es erlauben, Bewegungen möglichst frühzeitig zu detektieren. Die Messübungen dienen dazu, derartiges modernes Instrumentarium auch selbst kennen zu lernen.

Inhalt

Die Vorlesung vermittelt folgende Inhalte:

- Einführung "Monitoring"
- Geodätische Messverfahren bei Überwachungsmessungen
- Anlage von Überwachungsnetzen
- Auswertung von Zeitreihen
- Strain- und Stressanalyse
- Integrierte Auswerteansätze
- Überwachung geotechnischer Objekte
- Überwachung von Brücken
- Überwachung von Stauanlagen

Begleitend finden Messübungen in Kleingruppen (4-5 Studierende, Betreuung durch wiss. Mitarbeiter, Institut für Geodäsie) statt zu den Themen:

- Umgang mit speziellen geodätischen Messsystemen
- Umgang mit motorisierten Tachymetern
- Aufbau von Geosensornetzen
- Schwingungsmessungen mittels Lasertracking

Die Ausarbeitungen zu den Messübungen finden gruppenweise statt.

Literatur

Leistungsnachweis

Mündliche Prüfung 20 Minuten.

Verwendbarkeit

Dieses Modul liefert u.a. Grundlagen für die Anwendungen des Baubetriebs, des Tunnelbaus und der Bauablaufplanung.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 3. Studienjahr vorgesehen.

Modulname	Modulnummer
Hydromechanik für ME	2940

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2013 MLS
B.Sc. Mathematical Engineering 2015 ITKS
B.Sc. Mathematical Engineering 2016
B.Sc. Mathematical Engineering 2015 MECH
B.Sc. Mathematical Engineering 2015
B.Sc. Mathematical Engineering 2013 ITKS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Mathematical Engineering 2013
B.Sc. Mathematical Engineering 2013 MSB
B.Sc. Mathematical Engineering 2013 MECH
B.Sc. Mathematical Engineering 2015 MLS
B.Sc. Mathematical Engineering 2015 MSB
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. Andreas Malcherek

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
13971	VL	Hydraulik	Pflicht	2.00
14001	VL	Hydromechanik I	Pflicht	1.00
14002	UE	Hydromechanik I	Pflicht	1.00
14003	VL	Hydromechanik II, Hydrologie und Wasserbau	Pflicht	2.00
Summe	(Pflicht u	ınd Wahlpflicht)		6.00

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden erlernen zunächst die empirischen und theoretischen Grundlagen der Rohr- und Gerinnehydraulik mit einfachen algebraischen Methoden zu berechnen. Hier gilt es, die iterativen Verfahren der Hydraulik auch zu programmieren. In der Hydromechanik werden Strömungen mit Hilfe von partiellen Differentialgleichungen

beschrieben. Ziel ist es, die dahinter stehenden konzeptionellen Modelle zu verstehen und für einfache Fälle auch zu lösen.

Inhalt

Hydraulik (Malcherek):

- 1. Die Massenerhaltung in der Hydraulik
- 2. Volumen und Druck
- 3. Der hydrostatische Druck
- 4. Die Druckkraft auf beliebige Flächen
- 5. Kräfte und Impulsbilanz
- 6. Die Energieerhaltung
- 7. Die Viskosität der Flüssigkeiten
- 8. Rohrströmungen
- 9. Gerinneströmungen
- 10. Strömen und Schießen
- 11. Die Strömungskraft auf Körper

Hydromechanik I (Malcherek):

- 1. Die Lagrangesche Ableitung und Advektion
- 2. Die Massenerhaltung in der Hydromechanik
- 3. Potentialströmungen
- 4. Stromlinien und Stromfunktion
- 5. Hydrodynamische Druckberechnungen
- 6. Die Eulergleichungen
- 7. Die Viskosität
- 8. Die Navier-Stokes-Gleichungen
- 9. Turbulenzerfassung
- 10. Reynoldsgleichungen

Hydromechanik II, Hydrologie und Wasserwirtschaft (Malcherek):

- 1. Die wandnahe Grenzschicht
- 2. Turbulente Gerinneströmungen
- 3. Turbulente Rohrströmungen
- 4. Das ke-Modell
- 5. Transport: Advektion und Diffusion
- Einführung in die Wasserwirtschaft I

- 7. Einführung in die Wasserwirtschaft II
- 8. Hydrologie I: Die Wasserhaushaltsgleichung
- Hydrologie II: Niederschlag
 Hydrologie III: Verdunstung
- 11. Hydrologie IV: Abfluss

Literatur

Leistungsnachweis

Schriftliche Prüfung 180 Min. oder mündliche Prüfung 30 Min.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester.

Als Startzeitpunkt ist das Herbsttrimester im 2. Studienjahr vorgesehen.

Das Modul stimmt in Teilen mit dem Modul 1397 "Einführung in das Wasserwesen" sowie mit dem Modul 1400 "Hydromechanik und Wasserbau" überein, so dass es im Studium nicht zusammen mit diesen Modulen belegt werden kann.

Modulname	Modulnummer
Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME	2942

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2013 MLS
B.Sc. Mathematical Engineering 2015 ITKS
B.Sc. Mathematical Engineering 2016
B.Sc. Mathematical Engineering 2015 MECH
B.Sc. Mathematical Engineering 2015
B.Sc. Mathematical Engineering 2013 ITKS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Mathematical Engineering 2013
B.Sc. Mathematical Engineering 2013 MSB
B.Sc. Mathematical Engineering 2013 MECH
B.Sc. Mathematical Engineering 2015 MSB
B.Sc. Mathematical Engineering 2015 MLS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r

Dr. techn. Andreas Taras

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
210	108	102	7

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
13961	VL	Konstruktiver Ingenieurbau I	Pflicht	4.00
13962	UE	Konstruktiver Ingenieurbau I	Pflicht	2.00
25071	VL	Konstruktive Geometrie	Pflicht	1.00
25072	SU	Darstellungstechnik	Pflicht	1.00
25073	SU	Konstruktives Zeichnen, CAD	Pflicht	1.00
Summe (Pflicht und Wahlpflicht)			9.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Fächern Mechanik, Werkstoffe des Bauwesens und die Grundlagen der Baustatik vorausgesetzt.

Qualifikationsziele

Modulname: Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME

Im Modul erwerben die Studierenden grundlegende Kenntnisse zum Tragverhalten einfacher Tragwerke aus Stahl, Holz und Beton und die Fähigkeit, diese selbständig zu dimensionieren und deren Stabilitätsverhalten zu beurteilen.

Außerdem erlernen die Studierenden die Fähigkeit, Pläne und technische Zeichnungen zu lesen und mit Hilfe von CAD selbst zu erstellen. Durch Bearbeitung der Studienarbeiten werden erste Teile einer Bauvorlage (Zeichnungen, Lastannahmen) erarbeitet, die als Elemente einer größeren Aufgabenstellung (Bauvorlage für ein individuelles Musterhaus) das Verständnis für Interaktion der einzelnen Teildisziplinen im Studium und der späteren Tätigkeit als Ingenieur fördern.

Inhalt

Konstruktiver Ingenieurbau (Prof. Taras):

Es werden werkstoffübergreifend die Grundlagen des Konstruktiven Ingenieurbaus vermittelt. Nach einer Einführung in die typischen Bauformen im Stahl-, Holz- und Massivbau werden die Grundlagen der Sicherheitstheorie und die bemessungsrelevanten Werkstoffkenngrößen hergeleitet. Hierauf aufbauend erfolgt der Übergang zu Tragelementen und Tragwerken unter Berücksichtigung der Stabilität und der Theorie II. Ordnung. Anschließend werden die Bemessungskonzepte und Nachweisformate für Bauteile aus Stahl, Holz und Beton entwickelt. Abschließend wird auf die Gebrauchstauglichkeit und spezielle Tragmodelle eingegangen.

Konstruktive Geometrie, Darstellungstechnik, Konstruktives Zeichnen, CAD (Prof. Siebert):

Die Studierenden erhalten eine grundlegende Einführung in die zeichnerische Darstellung technischer Inhalte in Form von Plänen.

Literatur

Leistungsnachweis

Schriftliche Prüfung 120 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 30 Minuten und ein unbenoteter Teilnahmeschein.

(Unbenoteter Teilnahmeschein für die Bearbeitung von Studienarbeiten; diese sind Elemente einer "großen Studienarbeit" in Form einer Bauvorlage für ein individuelles Gebäude).

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Massivbau
- Stahlbau
- Holzbau
- alle konstruktiven Fächer
- Statik

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester.

Als Startzeitpunkt ist das Herbsttrimester im 2. Studienjahr vorgesehen.

Das Modul stimmt in Teilen mit dem Modul 1396 "Grundlagen des Konstruktiven Ingenieurbaus" sowie mit dem Modul 2507 "Entwerfen und Konstruieren" überein, so dass es im Studium nicht zusammen mit diesen Modulen belegt werden kann.

Modulname	Modulnummer
Statik III und Materialtheorie	2943

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2013 MLS
B.Sc. Mathematical Engineering 2015 ITKS
B.Sc. Mathematical Engineering 2016
B.Sc. Mathematical Engineering 2015 MECH
B.Sc. Mathematical Engineering 2015
B.Sc. Mathematical Engineering 2013 ITKS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Mathematical Engineering 2013
B.Sc. Mathematical Engineering 2013 MSB
B.Sc. Mathematical Engineering 2013 MECH
B.Sc. Mathematical Engineering 2015 MSB
B.Sc. Mathematical Engineering 2015 MLS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. habil. Michael Brünig

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
180	84	96	6

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14033	VL	Statik III - Ebene dünne Flächentragwerke	Pflicht	2.00
14034	UE	Statik III - Ebene dünne Flächentragwerke	Pflicht	2.00
29081	VL	Materialmodellierung	Pflicht	2.00
29082	UE	Materialmodellierung	Pflicht	1.00
Summe (Pflicht und Wahlpflicht)			7.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden kennen den Spannungszustand und die Gleichgewichtsbeziehungen für ebene dünne Flächentragwerke. Sie können praktische Anwendungsbeispiele von

Hand berechnen und so das in Statik I und II entwickelte "Ingenieurgefühl" für Kräftefluss, Lastabtragung und Verformungsverhalten weiter schärfen.

Weiter beherrschen die Studierenden die Modellierung und Simulation von inelastischem Materialverhalten. Sie können geeignete mathematische Modelle zur Simulation endimensionaler Experimente entwickeln und die zugehörigen Materialparameter identifizieren. Sie kennen unterschiedliche elastische und plastische Werkstoffmodelle und besitzen ein fundiertes Grundlagenwissen zur Ermittlung inelastischer Deformationen von Strukturen aus unterschiedlichen Materialien. Sie sind befähigt, Tragwerke über den elastischen Bereich hinaus zu analysieren und werden sensibilisiert, innovative Problemstellungen unter Ausnutzung der Tragreserven klassischer und neu zu entwickelnder Werkstoffe zu lösen.

Inhalt

Ebene Flächentragwerke (Prof. Gebbeken):

- Der zweiachsige Spannungszustand und die Gleichgewichtsbeziehungen am ebenen Flächentragwerk
- Aufspaltung in Scheiben und Platten
- Darstellung und Lösung der Scheiben- und Plattengleichung in kartesischen Koordinaten und Polarkoordinaten
- Grundlagen der Finite-Elemente-Methode für Flächentragwerke
- Anwendungen: Bemessung von Platten und Scheiben

Materialmodellierung (Prof. Brünig):

- Eindimensionale Versuche
- Mehraxialer Spannungszustand
- Elastisches Stoffgesetz
- Plastisches Stoffgesetz
- Elastisch-plastisches Stoffgesetz
- Anwendungen

Literatur

Leistungsnachweis

Mündliche Prüfung 30 Min. oder schriftliche Prüfung 120 Min.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jeweils im Frühjahrstrimester.

Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.

Das Modul stimmt in Teilen mit dem Modul 1403 "Vertiefte Kapitel der Statik und Numerik" sowie mit dem Modul 2908 "Materialmodellierung" überein, so dass es im Studium nicht zusammen mit diesen Modulen belegt werden kann.

Modulname	Modulnummer
Stoffkennwerte, Werkstoffe und Bauchemie für ME	2944

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2013 MLS
B.Sc. Mathematical Engineering 2015 ITKS
B.Sc. Mathematical Engineering 2016
B.Sc. Mathematical Engineering 2015 MECH
B.Sc. Mathematical Engineering 2015
B.Sc. Mathematical Engineering 2013 ITKS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Mathematical Engineering 2013
B.Sc. Mathematical Engineering 2013 MSB
B.Sc. Mathematical Engineering 2013 MECH
B.Sc. Mathematical Engineering 2015 MSB
B.Sc. Mathematical Engineering 2015 MLS
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r Dr.-Ing. Karl-Christian Thienel

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	72	78	5

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
30211	VL	Einführung in die Bauchemie, Stoffkennwerte und metallische Werkstoffe	Pflicht	2.00
30212	VL	Chemie und Eigenschaften organischer Baustoffe	Pflicht	2.00
30213	Р	Stoffkennwerte, metallische und organische Baustoffe	Pflicht	2.00
Summe (Pflicht und Wahlpflicht)			6.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Keine formalen Voraussetzungen

Qualifikationsziele

Die Studierenden erhalten einen Überblick über die chemischen und physikalischen Grundlagen des Werkstoffverhaltens. Sie erwerben Kompetenzen, organische und

metallische Baustoffe aufgrund ihrer maßgebenden Eigenschaften beurteilen zu können. Die Studierenden werden in die Lage versetzt, den geeigneten Werkstoff fü die jeweilige Bauaufgabe, auch unter Berücksichtigung der Umgebungsbedingungen, festlegen zu können.

Inhalt

Einführung in die Bauchemie - Allgemeine Grundlagen - Stoffkennwerte:

- Allgemein chemische Grundlagen; Bindungsarten und Wertigkeiten; Aggregatzustände; chemische Reaktionen; Chemie und Umwelt
- Bautechnische Regeln und Bestimmungen; Masse, Dichte, Prosität; Verhalten poröser Feststoffe gegenüber Feuchtigkeit; Messtechnik; Materialprüfung
- Chemie metallischer Werkstoffe; Stahlherstellung; Eigenschaften metallischer Werkstoffe; Schweißen, Schrauben; Nichteisenmetalle; Metallkorrosion

Chemie und Eigenschaften organischer Baustoffe

- Chemie organischer Baustoffe; Aufbau der Kunststoffe, Eigenschaften und Prüfung; Halbzeuge und Fertigprodukte, am Bau erhärtende Kunststoffe
- Aufbau des Holzes, physikalische Eigenschaften; Holzwerkstoffe; Holzschädlinge; Holzschutz
- Bituminöse Abdichtungen

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Literatur

Leistungsnachweis

Schriftliche Prüfung 90 Min. und zwei unbenotete Teilnahmescheine oder

mündliche Prüfung 25 Min. und zwei unbenotete Teilnahmescheine

(je ein Teilnahmeschein für Praktikum und Exkursion).

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

Massivbau

- Stahlbau
- Holzbau
- Hoch- und Ingenieurbau
- Baubetrieb
- Tragwerksplanung

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jeweils im Herbsttrimester.

Als Startzeitpunkt ist das Herbsttrimester im 1. Studienjahr vorgesehen.

Das Modul stimmt mit dem Modul 3021 "Werkstoffe und Bauchemie" überein, so dass es im Studium nicht zusammen mit diesem Modul belegt werden kann.

Modulname	Modulnummer
Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften I	2946

Zuordnung zum Studiengang		
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015		
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016		

Modulverantwortliche/r	
DrIng. Otto Heunecke	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
90			3

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
Summe (Pflicht und Wahlpflicht)		0.00		

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Es wird empfohlen, vor der Teilnahme an einem außeruniversitären Modul die Anrechenbarkeit und geeignete Form des Leistungsnachweises mit dem Modulverantwortlichen zu besprechen.

Qualifikationsziele

Das Modul bietet Studierenden die Möglichkeit der Anerkennung außeruniversitärer Studienleistungen aus dem Gesamtspektrum des Bauingenieurwesens und der Umweltwissenschaften, z. B. Summer Schools, entsprechend den eigenen Interessen. Es fördert somit den nationalen und internationalen Austausch im Einklang mit der Bologna-Erklärung (u. a. Mobilität, kulturelle Kompetenz, Zusammenarbeit).

Inhalt

Die Studierenden haben die Gelegenheit, spezielle Lehrinhalte im Bereich des Bauingenieurwesens und der Umweltwissenschaften außerhalb des Studienangebots der Fakultät der Universität der Bundeswehr München kennen zu lernen, sich anzueignen und im Wahlpflichtbereich des Bachelor-Studiums zu Anrechnung einzubringen.

Literatur

Leistungsnachweis

Die an einer anderen Universität erbrachten Leistungen werden auf Antrag des Studierenden anerkannt, sofern die eingebrachten Inhalte dem Bauingenieurwesen und den Umweltwissenschaften zugeordnet werden können und der erbrachte Leistungsnachweis als geeignet angesehen werden kann. Der Antrag bedarf der Schriftform.

Verwendbarkeit

Abrundung der Studieninhalte nach individueller Interessenlage der Studierenden.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester bzw. Semester. Beginn jederzeit im Studienjahr.

Modulname	Modulnummer
Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften II	2947

Zuordnung zum Studiengang	
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015	
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016	

Modulverantwortliche/r	
DrIng. Otto Heunecke	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
180			6

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
Summe (Pflicht und Wahlpflicht)		0.00		

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Es wird empfohlen, vor der Teilnahme an einem außeruniversitären Modul die Anrechenbarkeit und geeignete Form des Leistungsnachweises mit dem Modulverantwortlichen zu besprechen.

Qualifikationsziele

Das Modul bietet Studierenden die Möglichkeit der Anerkennung außeruniversitärer Studienleistungen aus dem Gesamtspektrum des Bauingenieurwesens und der Umweltwissenschaften, z. B. Summer Schools, entsprechend den eigenen Interessen. Es fördert somit den nationalen und internationalen Austausch im Einklang mit der Bologna-Erklärung (u. a. Mobilität, kulturelle Kompetenz, Zusammenarbeit).

Inhalt

Die Studierenden haben die Gelegenheit, spezielle Lehrinhalte im Bereich des Bauingenieurwesens und der Umweltwissenschaften außerhalb des Studienangebots der Fakultät der Universität der Bundeswehr München kennen zu lernen, sich anzueignen und im Wahlpflichtbereich des Bachelor-Studiums zur Anrechnung einzubringen.

Literatur

Leistungsnachweis

Die an einer anderen Universität erbrachten Leistungen werden auf Antrag des Studierenden anerkannt, sofern die eingebrachten Inhalte dem Bauingenieurwesen und den Umweltwissenschaften zugeordnet werden können und der erbrachte Leistungsnachweis als geeignet angesehen werden kann. Der Antrag bedarf der Schriftform.

Verwendbarkeit

Abrundung der Studieninhalte nach individueller Interessenlage der Studierenden.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester bzw. Semester. Beginn jederzeit im Studienjahr.

Modulname	Modulnummer
Interdisziplinäres Projekt KI	3027

Zuordnung zum Studiengang
B.Sc. Mathematical Engineering 2011 MTS
B.Sc. Mathematical Engineering 2011
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2015
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA1
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012
B.Sc. Mathematical Engineering 2011 MMP
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2012 BA4
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2016

Modulverantwortliche/r	
DrIng. Geralt Siebert	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150	25	125	5

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
30271	VÜ	Interdisziplinäres Projekt Konstruktiver Ingenieurbau	Pflicht	5.00
Summe (Pflicht und Wahlpflicht)			5.00	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
	Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Bereichen des Konstruktiven Ingenieurbaus entsprechend den zuvor gehörten Modulen vorausgesetzt.

Qualifikationsziele

Die Studierenden erhalten einen Einblick in die Bauabläufe von Großbaustellen sowie die entsprechende Bauplanung und das Baumanagement in Behörden und Ingenieurbüros. Sie erkennen am Beispiel ausgewählter Bauprojekte wesentliche fachliche Zusammenhänge der einzelnen Disziplinen des Bauingenieurwesens und der Umweltwissenschaften. Die Studierenden werden auch für mögliche rechtliche, ökonomische, ökologische und organisatorische Probleme bei der praktischen Umsetzung eines Bauvorhabens sensibilisiert.

Im Modul "Interdisziplinäres Projekt KI" erwerben die Studierenden die Grundfähigkeiten, das in den vorangegangenen Modulen erlernte theoretische Wissen an Beispielen aus der Ingenieurpraxis umzusetzen und sich in für sie neue Spezialthemen einzuarbeiten.

Inhalt

Große Bauingenieurexkursion als 5-tägige Exkursion

Im Modul "Interdisziplinäres Projekt KI" werden im Rahmen einer Studienarbeit zunächst werkstoffübergreifend Lösungen für einen Hochbauentwurf auf dem Niveau einer Vorplanung entwickelt. Hierzu wählen die Studierenden in Gruppen bis zu vier Personen geeignete Tragwerkskonzepte aus und legen die Konstruktionsweise und Abmessungen überschlägig fest. Die verschiedenen Lösungsmöglichkeiten werden skizzenhaft dargestellt. Auf dieser Grundlage wird jeweils eine Vorzugsvariante pro Bearbeitungsgruppe ausgewählt, für die eine statische Vorberechnung für wesentliche Tragelemente durchgeführt wird. Für diese Vorzugsvariante wird ein ausführlicherer Entwurf ausgearbeitet.

Verantwortlich sind die Professoren Taras, Keuser und Siebert sowie wiss. Mitarbeiter des Instituts für Konstruktiven Ingenieurbau; je nach Themenstellung ergänzende Betreuung durch Professoren und Mitarbeiter anderer Institute.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Literatur

Leistungsnachweis

Unbenoteter Teilnahmeschein für die gesamte 5-tägige Exkursion

Notenschein für Studienarbeit

Verwendbarkeit

Vorbereitung einer Bachelorarbeit

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils in der vorlesungsfreien Zeit des Frühjahrstrimesters.

Als Startzeitpunkt ist die vorlesungsfreie Zeit im 2. Studienjahr vorgesehen.

Modulname	Modulnummer
Seminar Studium plus 1	1002

Modulverantwortliche/r	
Zentralinstitut Studium+	

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
90 Stunden	36 Stunden	54 Stunden	

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
0100503	Т	Model United Nations (NMUN) Teil III Wahlpflicht		3.00
0100505	Т	Migration als historisches und Gegenwartsproblem: Flüchtlingsarbeit vor Ort Wahlpflicht		3.00
0100506	Т	Migration als historisches und Gegenwartsproblem: Flüchtlingsarbeit vor Ort: Die Vermittlung der deutschen Sprache (DAF): ein Basis,kurs für Lernbegleiter und Interessierte		3.00
01008302	S+-Sem	Bionik	Wahlpflicht	
01008305	S+-Sem	Philosophie und Kunst	Wahlpflicht	
01008310)S+-Sem	Technisches Laborseminar für Geistes- und Gesellschaftswissenschaftler	Wahlpflicht	
01008311	l S+-Sem	"What shall we do with the drunken sailor?" Populäre Chormusik im Spiegel der Zeitgeschichte	Wahlpflicht	
01008319	S+-Sem	English for Academic Purposes	Wahlpflicht	
01008321	l S+-Sem	Stressbewältigung bei Soldatinnen und Soldaten sowie ihren Angehörigen im Zusammenhang mit Extrembelastungen in der Bundeswehr	Wahlpflicht	
01008322	2S+-Sem	Digitalisierung und das Internet der Zukunft	Wahlpflicht	
01008324	IS+-Sem	"Balu und Du" - Life Skills Mentoring für Kinder III	Wahlpflicht	
01008330) SE	V	Wahlpflicht	
01008331	S+-Sem	Radioaktivität und Kernenergie	Wahlpflicht	
01008337	S+-Sem	Ringvorlesung 'Luft' (SWI, SPO, PSY)	Wahlpflicht	
01008340)S+-Sem	Allgemeine Betriebswirtschaftslehre. Ein Planspiel	Wahlpflicht	
01008345	S+-Sem	Model United Nations (MUN), Teil 1	Wahlpflicht	
0100836	Т			3.00

Summe (Pflicht und Wahlpflicht) 0.00

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden erwerben personale, soziale oder methodische Kompetenzen, um das Studium als starke, mündige Persönlichkeit zu verlassen. Die *studium plus* -Seminare bereiten die Studierenden dadurch auf ihre Berufs- und Lebenswelt vor und ergänzen die im Studium erworbenen Fachkenntnisse.

Durch die Vermittlung von Horizontwissen wird die eingeschränkte Perspektive des Fachstudiums erweitert. Dadurch lernen die Studierenden, das im Fachstudium erworbene Wissen in einem komplexen Zusammenhang einzuordnen und in Relation zu den anderen Wissenschaften zu sehen.

Durch die exemplarische Auseinandersetzung mit gesellschaftsrelevanten Fragen erwerben die Studierenden die Kompetenz, diese kritisch zu bewerten, sich eine eigene Meinung zu bilden und diese engagiert zu vertreten. Das dabei erworbene Wissen hilft, Antworten auch auf andere gesellschaftsrelevante Fragestellungen zu finden.

Durch die Steigerung der Partizipationsfähigkeit wird die mündige Teilhabe an sozialen, kulturellen und politischen Prozessen der modernen Gesellschaft gefördert.

Inhalt

Die studium plus -Seminare bieten Lerninhalte, die Horizont- oder Orientierungswissen vermitteln bzw. die Partizipationsfähigkeit steigern. Sämtliche Inhalte sind auf den Erwerb personaler, sozialer oder methodischer Kompetenzen ausgerichtet. Sie bilden die Persönlichkeit und erhöhen die Beschäftigungsfähigkeit.

Bei der Vermittlung von Horizontwissen werden die Studierenden beispielsweise mit den Grundlagen anderer, fachfremder Wissenschaften vertraut gemacht, sie lernen Denkweisen und "Kulturen" der fachfremden Disziplinen kennen. Bei der Vermittlung von Orientierungswissen steigern die Studierenden ihr Reflexionsniveau, indem sie sich

exemplarisch mit gesellschaftsrelevanten Themen auseinandersetzen. Bei der Vermittlung von Partizipationswissen steht der Einblick in verschiedene soziale und politische Prozesse im Vordergrund.

Einen detaillierten Überblick bietet das jeweils gültige Seminarangebot von *studium plus*, das von Trimester zu Trimester neu erstellt und den Erfordernissen der künftigen Berufswelt sowie der Interessenslage der Studierenden angepasst wird.

Literatur

Leistungsnachweis

keine

Verwendbarkeit

Das Modul ist für sämtliche Bachelorstudiengänge gleichermaßen geeignet.

Dauer und Häufigkeit

Modulname	Modulnummer
Seminar studium plus 2, Training	1005

Modulverantwortliche/r	
Zentralinstitut Studium+	

	Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
ſ	150 Stunden	72 Stunden	78 Stunden	

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
0100503	Т	in the second se		3.00
0100504	T Unternehmensethik und werteorientierte Führungstechniken Wahlpflicht			
0100505	Т	Migration als historisches und Gegenwartsproblem: Flüchtlingsarbeit vor Ort Wahlpflicht		3.00
0100506	Т	Migration als historisches und Gegenwartsproblem: Flüchtlingsarbeit vor Ort: Die Vermittlung der deutschen Sprache (DAF): ein Basis,kurs für Lernbegleiter und Interessierte	Wahlpflicht	3.00
0100518	Т	Die ganze Welt ist Bühne - Die 'eigene Rolle' in Beruf und Leben finden und stärken	Wahlpflicht	
0100831 <i>′</i>	l S+-Sem	"What shall we do with the drunken sailor?" Populäre Chormusik im Spiegel der Zeitgeschichte	Wahlpflicht	
0100832 <i>°</i>	l S+-Sem	Stressbewältigung bei Soldatinnen und Soldaten sowie ihren Angehörigen im Zusammenhang mit Extrembelastungen in der Bundeswehr	Wahlpflicht	
01008324	S+-Sem	"Balu und Du" - Life Skills Mentoring für Kinder III	Wahlpflicht	
01008330) SE	v	Wahlpflicht	
01008345	S+-Sem	Model United Nations (MUN), Teil 1	Wahlpflicht	
0100836	Т			3.00
Summe (Pflicht und Wahlpflicht)				6.00

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen	

Qualifikationsziele

studium plus- Seminare:

Die Studierenden erwerben personale, soziale oder methodische Kompetenzen, um das Studium als starke, mündige Persönlichkeit zu verlassen. Die studium plus- Seminare bereiten die Studierenden dadurch auf ihre Berufs- und Lebenswelt vor und ergänzen die im Studium erworbenen Fachkenntnisse.

Durch die Vermittlung von Horizontwissen wird die eingeschränkte Perspektive des Fachstudiums erweitert. Dadurch lernen die Studierenden, das im Fachstudium erworbene Wissen in einem komplexen Zusammenhang einzuordnen und in Relation zu den anderen Wissenschaften zu sehen.

Durch die exemplarische Auseinandersetzung mit gesellschaftsrelevanten Fragen erwerben die Studierenden die Kompetenz, diese kritisch zu bewerten, sich eine eigene Meinung zu bilden und diese engagiert zu vertreten. Das dabei erworbene Wissen hilft, Antworten auch auf andere gesellschaftsrelevante Fragestellungen zu finden.

Durch die Steigerung der Partizipationsfähigkeit wird die mündige Teilhabe an sozialen, kulturellen und politischen Prozessen der modernen Gesellschaft gefördert.

studium plus-Trainings:

Die Studierenden erwerben personale, soziale und methodische Kompetenzen, um als Führungskräfte auch unter komplexen und teils widersprüchlichen Anforderungen handlungsfähig zu bleiben bzw. um ihre Handlungskompetenz wiederzuerlangen.

Damit ergänzt das Trainingsangebot die im Rahmen des Studiums erworbenen Fachkenntnisse insofern, als diese fachlichen Kenntnisse von den Studierenden in einen berufspraktischen Kontext eingebettet werden können und Möglichkeiten zur Reflexion des eigenen Handelns angeboten werden.

Inhalt

Die **studium plus -Seminare** bieten Lerninhalte, die Horizont- oder Orientierungswissen vermitteln bzw. die Partizipationsfähigkeit an Diskussionen über wichtige aktuelle Themen steigern. Sämtliche Inhalte sind auf den Erwerb personaler, sozialer oder methodischer Kompetenzen ausgerichtet. Sie bilden die Persönlichkeit und erhöhen die Beschäftigungsfähigkeit.

Bei der Vermittlung von Horizontwissen werden die Studierenden u.a. mit den Grundlagen anderer, fachfremder Wissenschaften vertraut gemacht, sie lernen Denkweisen und "Wissenskulturen" der fachfremden Disziplinen kennen. Bei der Vermittlung von Orientierungswissen steigern die Studierenden ihr Reflexionsniveau, indem sie sich exemplarisch mit gesellschaftsrelevanten Themen auseinandersetzen. Bei der Vermittlung von Partizipationswissen steht der Einblick in verschiedene soziale und politische Prozesse im Vordergrund.

Die **studium plus- Trainings** entsprechen den Trainings für Führungskräfte in modernen Unternehmen und bieten berufsrelevante und an den Themen der aktuellen Führungskräfteentwicklung von Organisationen und Unternehmen orientierte Lerninhalte.

Literatur

Leistungsnachweis

Verwendbarkeit

Das Modul ist für sämtliche Bachelorstudiengänge gleichermaßen geeignet.

Dauer und Häufigkeit